Acceso abierto

Convection Drying Influence on Thermo-Physical Properties, Bioactive Substances, Color and Texture Profile of Red Pepper (Capsicum Spp)


Cite

1. Antonio, A.S., Wiedemann, L.S.M., Junior, V.F. (2018). The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 8:25767–25784. https://DOI:10.1039/c8ra02067a10.1039/C8RA02067A908272335539808 Search in Google Scholar

2. Asnin, L., Park, S.W. (2015). Isolation and analysis of bioactive compounds in Capsicum peppers. Crit Rev Food Sci Nutr., 55:254-89. https://DOI.org/10.1080/10408398.2011.65231610.1080/10408398.2011.65231624915387 Search in Google Scholar

3. Baenas, N., Belovic, M., Ilic, N., Moreno, D.A., Garcia-viguera, C. (2019). Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chemistry, 274:872–885. https://DOI.org/10.1016/j.foodchem.2018.09.04710.1016/j.foodchem.2018.09.04730373022 Search in Google Scholar

4. Carvalho, A.V., de Andrade Mattietto, R., de Oliveira Rios, A., de Almeida Maciel, R., Moresco, K.S., de Souza Oliveira, T.C. (2015). Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes. J. of Food Science & Technology, 52:7457–7464. https://DOI.org/10.1007/s13197-015-1833-010.1007/s13197-015-1833-0 Search in Google Scholar

5. Chong, C.H., Law, C.L., Cloke, M., Abdullah, L.C., Daud, W.R.W. (2009). Drying Models and Quality Analysis of Sun-Dried Ciku. J. Drying Technology, 9:985-992. https://DOI.org/10.1080/0737393090290449110.1080/07373930902904491 Search in Google Scholar

6. Cabralesa, L.e.b., Montijanob, J.I., Schonbek, M., Castañed, A. R. S. (2018). A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy. Mathematics and Computers in Simulation, 151 : 96-110. https://doi.org/10.1016/j.matcom.2018.03.005Get Search in Google Scholar

7. de Sá Mendes, N., Branco de Andrade Goncalves, Ė.C. (2020). The role of bioactive components found in peppers. Trends in Food Science & Technology, 99:229–243. https://DOI.org/10.1016/j.tifs.2020.02.03210.1016/j.tifs.2020.02.032 Search in Google Scholar

8. Di Scala, K., Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. L.W.T. - Food Science and Technology, 41:789–795. https://DOI:10.1016/j.lwt.2007.06.00710.1016/j.lwt.2007.06.007 Search in Google Scholar

9. Dong, X., Li, X., Ding, L., Cui, F., Tang, Z., Liu, Z, (2014). Stage extraction of capsaicinoids and red pigments from fresh red pepper (Capsicum) fruits with ethanol as solvent. LWT - Food Science and Technology,59:396-402. https://DOI.org/10.1016/j.lwt.2014.04.05110.1016/j.lwt.2014.04.051 Search in Google Scholar

10. Ergünes, G., Tarhan, S. (2006). Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. J. of Food Engineering, 76:446-452. https://DOI.org/10.1016/j.jfoodeng.2005.05.04610.1016/j.jfoodeng.2005.05.046 Search in Google Scholar

11. Ertani, A., Sambo, P., Nicoletto, C., Santagata, S., Schiavon, M., Nardi, S. (2015). The use of organic biostimulants in hot pepper plants to help low input sustainabl agriculture. Chemical and Biological Technologies in Agriculture, 2:1-11. https://DOI10.1186/s40538-015-0039-z10.1186/s40538-015-0039-z Search in Google Scholar

12. Giuffrida, D., Dugo, P., Torre, G., Bignardi, C., Cavazza, A., Corradini, C., et al. (2013). Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chemistry, 140:794–802. https://DOI.org/10.1016/j.foodchem.2012.09.06010.1016/j.foodchem.2012.09.06023692768 Search in Google Scholar

13. González-Zamora, A., Sierra-Campos, E., Pérez-Morales, R., Vázquez-Vázquez, C., Gallegos-Robles, M.A., López-Martínez, J.D., García-Hernández, J.L. (2015). Measurement of Capsaicinoids in Chiltepin Hot Pepper: A Comparison Study between Spectrophotometric Method and High Performance Liquid Chromatography Analysis. Journal of Chemistry, 1-11. https://DOI.org/10.1155/2015/70915010.1155/2015/709150 Search in Google Scholar

14. Gordon, A., Diane, M.B. (2007). Standardization of a Rapid Spectrophotometric Method for Lycopene Analysis Proc. Xth IS on the Processing Tomato Eds.: A. B’Chir and S. Colvine Acta Hort. 758, ISHS. Search in Google Scholar

15. Guiné, R.P.F, Pinho, S., MBarroca, M.J. (2011). Study of the convective drying of pumpkin (Cucurbita maxima). Food and Bioproducts Processing, 89:422-428. https://DOI.org/10.1016/j.fbp.2010.09.00110.1016/j.fbp.2010.09.001 Search in Google Scholar

16. Gurlek, G., Ozbalta, N., Gungor, A. (2009). Solar tunnel drying characteristics and mathematical modelling of tomato. J. of Thermal Science and technology, 29:15-23. Search in Google Scholar

17. Hallmann, E., Rembiałkowska, E. (2012).Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. Journal of the Science of Food and Agriculture, 92:2409–2415. https://DOI.org/10.1002/jsfa.562410.1002/jsfa.562422368104 Search in Google Scholar

18. Heras-Ramírez, M.E., Quintero-Ramos, A., Camacho-Dávila, A.A., John Barnard, J., Talamás-Abbud, R., Vinicio, J., Torres-Muñoz, V.T., Salas-Muñoz, E. (2012). Effect of blanching and drying temperature on polyphenolic compound stability and antioxidant capacity of apple pomace. Food Bioprocess Technol., 5:2201–2210. https://DOI10.1007/s11947-011-0583-x10.1007/s11947-011-0583-x Search in Google Scholar

19. Joseph, A., Johannah, N.M., Suresh Kumar, S., Syam Das, S., Maliakel, B., Krishnakumar, IM.,(2020). Safety assessment of a fenugreek dietary fiber-based formulation of capsaicinoids-rich red chili (Capsicum annum) extract (Capsifen®): Acute and sub-chronic studies. Toxicology Reports, 7: 602–609. https://DOI.org/10.1016/j.toxrep.2020.04.01410.1016/j.toxrep.2020.04.014722927532435598 Search in Google Scholar

20. Kantar, M.B., Anderson, J.E., Lucht, S.A., Mercer, K., Bernau, V., Case, K.A., et al. (2016). Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PloS One, 11:1–12. https://DOI.org/10.1371journal.pone.016146410.1371/journal.pone.0161464 Search in Google Scholar

21. Kim, H.S., Yoo, S.S. (2016). A study on quality characteristics and optimized recipe of muffin with added acai berry powder. J. of the Korean Society of Food Culture, 31:226–234. https://DOI.org/10.1016/j.eswa.2016.04.02710.1016/j.eswa.2016.04.027 Search in Google Scholar

22. Kumar, M., Verma, V. (2009). Bell pepper (Capsicum annum L) production in low cost naturally ventilated polyhouses during winters in the mid hills of India. Acta Horticult, 807:389–39. https://DOI:10.17660/ActaHortic.2009.807.5510.17660/ActaHortic.2009.807.55 Search in Google Scholar

23. Kumar, R.V., Sharma, V.K. (2012). Chattopadhyay B, Chakraborty S. An improved plant regeneration and Agrobacterium mediated transformation of red pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants, 18:357-364. https://DOI:10.1007/s12298-012-0132-8.10.1007/s12298-012-0132-8355055924082498 Search in Google Scholar

24. Kutltu, N., Isci, A. (2017). Drying characteristics of zucchini and empirical modeling of its drying process. Internationl Journal of Food Studies, 6:232-244. https://DOI:10.7455/ijfs/6.2.2017.a910.7455/ijfs/6.2.2017.a9 Search in Google Scholar

25. Lo Scalzo, R., Campanelli, G.,, Paolo, D., Fibiani, M., Bianchi, G. (2020). Influence of organic cultivation and sampling year on quality indexes of sweet pepper during 3 years of production. European Food Research and Technology, 246:1325–1339. https://doi.org/10.1007/s00217-020-03492-1 Search in Google Scholar

26. Luyten, H., van Vliet, T. (2006). Acoustic emission, fracture behavior and morphology of dry crispy foods: a discussion article. J. Texture Stud, 37:221–240. https://DOI.org/10.1111/j.1745-4603.2006.00049.x10.1111/j.1745-4603.2006.00049.x Search in Google Scholar

27. Nicoleti, J.F., Silveira-Jr, V, Telis-Romero, J., Telis, V.R.N. (2005). Viscoelastic behavior of persimmons dried at constant air temperature. L.W.T. - Food Science and Technology, 38:143-150. https://DOI.org/10.1016/j.lwt.2004.04.01610.1016/j.lwt.2004.04.016 Search in Google Scholar

28. Nie,W., Guo, W. (2019). Technical Note Applications of Chapman-Richards model to geotechnical engineering. Journal of Rock Mechanics and Geotechnical Engineering, 11: 1286-1292. https://doi.org/10.1016/j.jrmge.2018.12.019 Search in Google Scholar

29. Onwude, D.I., Hashim, N., Janius, R., Nawi, N., Abdan, K. (2016). Modelling the thin-layer drying of fruits and vegetables: A review. Comprehensive reviews in food sciences and food safety, 15:599-618. https://DOI.org/10.1111/1541-4337.1219610.1111/1541-4337.1219633401820 Search in Google Scholar

30. Pathare, P.B., Opara, U.L., Al-Said, F.A.J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol., 6:36–60. https://DOI10.1007/s11947-012-0867-910.1007/s11947-012-0867-9 Search in Google Scholar

31. Potosí-Calvache, DC, Vanegas-Mahecha, P., Martínez-Correa, H.A. (2017). Convective drying of squash (Cucurbita moschata): Influence of temperature and air velocity on effective moisture diffusivity, carotenoid content and total phenols. Revista DYNA, 84:112-119. http://dx.DOI.org/10.15446/dyna.v84n202.6390410.15446/dyna.v84n202.63904 Search in Google Scholar

32. Robert and Bradley (2010).Moisture and Total Solids Analysis, in Food Analysis, 11 Part: Compositional Analysis of Foods. Fourth Edition, edited by, S. Suzanne Nielsen, 130pp.10.1007/978-1-4419-1478-1_6 Search in Google Scholar

33. Reyes-Escogido, Mde L., Gonzalez-Mondragon, E.G., Vazquez-Tzompantzi, E. (2001) Chemical and pharmacological aspects of capsaicin. Molecules, 16:1253-70.. https://DOI.org/10.3390/molecules1602125310.3390/molecules16021253625961021278678 Search in Google Scholar

34. Rodriguez-Amaya, D.B., Kimura, M., Godoy, H.T., Amaya-Farfan, J. (2008). Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. J. Food Compos. Anal., 21:445–463. http://dx.DOI.org/10.1016/j.jfca.2008.04.00110.1016/j.jfca.2008.04.001 Search in Google Scholar

35. Romano, G., Argyropoulos, D., Nagle, M., Khan, M.T., Muller, J. (2012) Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J. of Food Engineering, 109:438–448. https://DOI.org/10.1016/j.jfoodeng.2011.10.037s10.1016/j.jfoodeng.2011.10.037 Search in Google Scholar

36. Ross, K.A., Scanlon, M.G. (2004). A fracture mechanics analysis of the texture of fried potato crust. J. Food Eng., 62:417–423. https://DOI.org/10.1016/S0260-8774(03)00274-710.1016/S0260-8774(03)00274-7 Search in Google Scholar

37. Seerangurayar, T., Al-Ismaili Abdulrahim, M., Janitha Jeewantha, L.H., Al-Habsi, N.A. (2019). Effect of solar drying methods on color kinetics and texture of dates. Food & Bioproducts Processing, 116:27-239. https://DOI.org/10.1016/j.fbp.2019.03.01210.1016/j.fbp.2019.03.012 Search in Google Scholar

38. Sasaki,Y., Orikasa, T., Nakamura, N., Hayashi, K., Yasaka,Y., Makino, N., Shobatake, K., Shoji Koide, S., Shiina, T. (2022). Optimal packaging for strawberry transportation: Evaluation and modeling of the relationship between food loss reduction and environmental impact. Journal of Food Engineering, 314, 110767. https://doi.org/10.1016/j.jfoodeng.2021.110767 Search in Google Scholar

39. Sharma, R., Joshi, V.K., Kaushal, M. (2014). Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder. J. Food Sci. Technol., 52: 3433–3439. https://DOI:10.1007/s13197-014-1374-y10.1007/s13197-014-1374-y444486626028724 Search in Google Scholar

40. Swackhamer, C., Bornhorst, G.M. (2019). Fracture properties of foods: Experimental considerations and applications to mastication. J. of Food Engineering, 263: 213-226. https://DOI.org/10.1016/j.jfoodeng.2019.07.00210.1016/j.jfoodeng.2019.07.002 Search in Google Scholar

41. Tijskens, L. M. M., Luyten, H. (2004). Modelling food texture, In « Texture in food » Volume 2: Solid foods, Woodhead Publishing Ltd and CRC Press LLC, 222-256pp.10.1201/9780203023952.ch9 Search in Google Scholar

42. Velickova, E., Winkelhausen, E., Kuzmanova, S. (2014). Physical and sensory properties of ready to eat apple chips produced by osmo convective drying. J. Food Sci. Technol., 51:3691–3701. doi: 10.1007/s13197-013-0950-x425246225477635 Open DOISearch in Google Scholar

43. Wang, Z., Junhong, S., Chen, F., Xiaojun, L., Xiaosong, H. (2007). Mathematical modeling on thin layer microwave drying of apple pomace with and without hot air predryring. J. of Food Engineering,80:536-544. https://DOI.org/10.1016/j.jfoodeng.2006.06.01910.1016/j.jfoodeng.2006.06.019 Search in Google Scholar

44. Wang, J., Law, C.L., Nema, P.K., Zhao, J.H., Liu, Z.L., Deng, L.Z., Gao, Z.J., Xiao, H.W. (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemonslices. J. Food Eng., 224:129-138. https://DOI.org/10.1016/j.jfoodeng.2018.01.00210.1016/j.jfoodeng.2018.01.002 Search in Google Scholar

45. Zhang, Z., Wei,. Q., Nie, M., Jiang, N., Liu, C., Chunquan, Liu, C., Lia, D., Xu, L. (2018). Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT - Food Science and Technology, 96:357–363. https://DOI.org/10.1016/j.lwt.2018.05.0610.1016/j.lwt.2018.05.061 Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology