1. bookVolumen 25 (2021): Edición 2 (December 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2344-150X
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

Effect of infant meal home preparation temperature on surviving of Bacillus cereus sensu lato: A case of Bechar city, Algeria

Publicado en línea: 30 Dec 2021
Volumen & Edición: Volumen 25 (2021) - Edición 2 (December 2021)
Páginas: 201 - 210
Recibido: 28 Sep 2021
Aceptado: 30 Nov 2021
Detalles de la revista
License
Formato
Revista
eISSN
2344-150X
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

This work aimed to enumerate the Bacillus cereus sensu lato from infant’s flour sampled at Béchar city and evaluate its resistance to different heating conditions during meal preparation patterns at home. Our findings revealed a prevalence of 74% with 2.4 to 3.9 CFU/g in the analyzed samples. Regarding the heat resistance at 90 °C to 98 °C, our results showed heat resistance variability which depends on the isolate, for example, D90 °C and zT °C values varied from 3.24 to 5.52 min and 11.56 to 89.74 °C respectively. Then, the decimal reduction (n) was calculated at all preparation temperatures (50, 60, 70, 80, 90 and 100 °C). Low “n” was observed with the preparation at T≤50 °C as recommended by the fabricant. However, at the other temperatures, high “n” was observed at 100°C with median and 95th values of 2.22 and 12.36 respectively. Therefore, bacterial concentrations (99th) were estimated at 0.124 log CFU/g for 100 °C. These concentrations could be increased with bacterial growth during meal storage and then achieve critical concentrations. Thus, the results of this work highlight the interest to establish a risk assessment for babies and to improve the production, preparation, and storage conditions of the infant’s flour.

Keywords

1. Bigelow, W. D. (1921). The logarithmic nature of thermal death time curves. J. Infect. Dis. 29, 528-536. https://www.jstor.org/stable/3008291010.1093/infdis/29.5.528 Search in Google Scholar

2. Buss da Silva, N., Baranyi, J., Carciofi, B. A. M. & Ellouze, M. (2017). From culture-medium-based models to applications to food: predicting the growth of B. cereus in reconstituted infant formulae. Front. Microbiol. 8, 1799. doi: 10.3389/fmicb.2017.0179910.3389/fmicb.2017.01799561330728983287 Search in Google Scholar

3. Byaruhanga, Y. B., Bester B. H. & Watson T.G. (1999). Growth and survival of Bacillus cereus in mageu, a sour maize beverage. World J. Microbiol. Biotechnol. 15, 329-333. https://doi.org/10.1023/A:100896711738110.1023/A:1008967117381 Search in Google Scholar

4. Carlin, F, Albagnac, C, Rida, A, Guinebretière, M. H, Couvert O. & Nguyen-The C. (2013). Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment. Food Microbiol. 33, 69-76. DOI: 10.1016/j.fm.2012.08.01410.1016/j.fm.2012.08.01423122503 Search in Google Scholar

5. Clark, D. & Shrimpton R. (2000). Complementary feeding, the Code, and the Codex. Food Nutr. Bull. 21, 25-29.10.1177/156482650002100104 Search in Google Scholar

6. Daczkowska-Kozon, E. G., Bednarczyk, A., Biba M. & Repich K. (2009). Bacteria of Bacillus cereus group in cereals at retail. Polish J. Food Nutr. Sci. 59, 53-59. Search in Google Scholar

7. Guinebretière, M. H., Thompson, F. L., Sorokin, A., Normand, P., Dawyndt, P., Ehling-Schulz, Svensson, B., Sanchis, V., Nguyen-The, C., Heyndrickx, M. & De Vos, P. 2008. « Ecological diversification in the Bacillus cereus group ». Environ. Microbiol. 10, 851-865. https://doi.org/10.1111/j.1462-2920.2007.01495.x10.1111/j.1462-2920.2007.01495.x18036180 Search in Google Scholar

8. Grawitz M. (2001). Méthodes des sciences sociales (Social science methods). 11ème édition. 2001. Paris: Dalloz. Search in Google Scholar

9. Heini, N. M., Stephan, R., Stephan R. & Ohler S. (2018). Characterization of Bacillus cereus group isolates from powdered food products. Int. J. Food Microbiol. 283, 59-64. https://doi.org/10.1016/j.ijfoodmicro.2018.06.01910.1016/j.ijfoodmicro.2018.06.01930099996 Search in Google Scholar

10. Jackson, K. M. & Nazar AM. (2006). Breastfeeding, the Immune Response, and Long-term Health. J. Am. Osteopath. Assoc. 106, 203-207. https://pubmed.ncbi.nlm.nih.gov/16627775/ Search in Google Scholar

11. Janštová, B. & Lukášová J. (2001). Heat resistance of Bacillus spp. spores isolated from cow’s milk and farm environment. Acta Vet Brno 70, 179-184. DOI: 10.2754/avb20017002017910.2754/avb200170020179 Search in Google Scholar

12. Mazas, M., López, M., Martínez, S., Bernardo A. & Martin R. (1999). Heat resistance of Bacillus cereus spores: effects of milk constituents and stabilizing additives. J. Food Prot. 62, 410-413. DOI: 10.4315/0362-028x-62.4.41010.4315/0362-028X-62.4.410 Search in Google Scholar

13. Membré, J. M. & Valdramidis V. (2016). Modeling in Food Microbiology. From Predictive Microbiology to Exposure Assessment. ISTE Press Ltd and Elsevier Ltd, UK. https://doi.org/10.1016/B978-1-78548-155-0.50005-810.1016/B978-1-78548-155-0.50005-8 Search in Google Scholar

14. Messelhäusser, U., Frenzel, E., Blöchinger, C., Zucker, R., Kämpf, P. & Ehling-Schulz, M. (2014). Emetic Bacillus cereus are more volatile than thought: recent foodborne outbreaks and prevalence studies in Bavaria (2007-2013). Biomed Res. Int. 2014:46560310.1155/2014/465603403335724895578 Search in Google Scholar

15. Montville TJ, Dengrove R, De Siano T, Bonnet M, & Schaffner DW. (2005). Thermal resistance of spores from virulent strains of Bacillus anthracis and potential surrogates. J. Food Prot. 68, 2362-2366. DOI: 10.4315/0362-028x-68.11.236210.4315/0362-028X-68.11.2362 Search in Google Scholar

16. Nauta, M. J. (2001). A modular process risk model structure for quantitative microbiological risk assessment and its application in an exposure assessment of Bacillus cereus in a REPFED. RIVM Report 249106007. Bilthoven, The Netherlands. http://hdl.handle.net/10029/9385 Search in Google Scholar

17. NutriFaso, (2007). Cahier des charges d’une farine infantile souhaitant être labellisée NUTRIFASO (Specifications for infant flour wishing to be labeled). Projet NutriFaso, Gret, IRD, ANSA-B. Search in Google Scholar

18. Sadek, Z.I., Abdel-Rahman, M.A., Azab, M.S., Darwesh, O.M., Hassan, M.S. (2018). Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes. Toxicol. Rep. 5, 871-877. https://doi.org/10.1016/j.toxrep.2018.08.013.10.1016/j.toxrep.2018.08.013611104630167378 Search in Google Scholar

19. Sanogo, M., Branderhorst, E., Laurent F. & Trèche S. (1994). La production artisanale des farines infantiles, Expériences et procédés (The artisanal production of infant flours ériences Experiences and processes). Gret, Paris, France; 11. Search in Google Scholar

20. Sarrias, J. A., Valero M. & Salmeron MC. (2002). Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 19, 589-595. https://doi.org/10.1006/fmic.2002.051410.1006/fmic.2002.0514 Search in Google Scholar

21. Savić, D., Ristanović, E., Miljković, S. B., Radaković, S., Jošić, D. & Lepšanović, Z., (2020). Enterotoxin and emetic toxin genes profiles and genetic diversity of Bacillus cereus isolated from food, environmental and clinical samples in Serbia. Acta Veterinaria, 70, 182-193. DOI: https://doi.org/10.2478/acve-2020-001310.2478/acve-2020-0013 Search in Google Scholar

22. Stoeckel, M., Westermann, A. C., Atamer Z. & Hinrichs J. (2013). Thermal inactivation of Bacillus cereus spores in infant formula under shear conditions. Dairy Sci. Technol. 93, 163-175. https://hal.archives-ouvertes.fr/hal-0120140310.1007/s13594-012-0101-6 Search in Google Scholar

23. Valerio, F., De Bellis, P., Di Biase, M., Lonigro, S.L., Giussani, B., Visconti, A., Lavermicocca P. & Sisto A. (2012). Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 156, 278-285. https://doi.org/10.1016/j.ijfoodmicro.2012.04.00510.1016/j.ijfoodmicro.2012.04.00522551674 Search in Google Scholar

24. Zhang, Y., Chen, J., Feng, C., Zhan, L., Zhang, J., Li, Y., Yang, Y., Chen, H., Zhang, Z., Zhang, Y., Mei L. & Li H. (2017). Quantitative prevalence, phenotypic and genotypic characteristics of Bacillus cereus isolated from retail infant foods in China. Foodborne Pathog. Dis. 14, 564-572. DOI: 10.1089/fpd.2017.228710.1089/fpd.2017.228728753035 Search in Google Scholar

25. Ziane, M., Couvert, O., Le Chevalier, P., Moussa-Boudjemaa B. & Leguerinel I. (2016). Identification and characterization of aerobic spore forming bacteria isolated from commercial camel’s milk in south of Algeria. Small Ruminant Res. 137, 59-64. https://doi.org/10.1016/j.smallrumres.2016.03.00410.1016/j.smallrumres.2016.03.004 Search in Google Scholar

26. Ziane, M., Desriac, N., Le Chevalier, P., Moussa-Boudjemaa B. & Leguerinel I. (2014). Identification, heat resistance and growth potential of mesophilic spore-forming bacteria isolated from Algerian retail packaged couscous. Food Control 45, 16-21. https://doi.org/10.1016/j.foodcont.2014.04.00310.1016/j.foodcont.2014.04.003 Search in Google Scholar

27. Ziane, M., Leguerinel I. & Membré J.M. (2019). A quantitative microbiological exposure assessment of Bacillus cereus group IV in couscous semolina, Algeria. Microb. Risk Anal. 11, 11-22. https://doi.org/10.1016/j.mran.2018.07.00110.1016/j.mran.2018.07.001 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo