Acceso abierto

Possibility of Reinforcement the Functional Potential of Vegetable Juices with the use of Novel Strain Lactiplantibacillus Plantarum EK11 Isolated from an Unconventional Fermented Food Matrix


Cite

1. Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A. & Serna-Saldívar, S.O. (2014). Bound phenolics in foods, a review. Food Chem. 152, 46–55. doi: 10.1016/j.foodchem.2013.11.093.10.1016/j.foodchem.2013.11.09324444905 Search in Google Scholar

2. Adejo, G.O., Agbali, F.A. & Otokpa, O. S. (2015). Antioxidant, Total Lycopene, Ascorbic Acid and Microbial Load Estimation in Powdered Tomato Varieties Sold in Dutsin-Ma Market. OALib Journal, 2, e1768. doi: http://dx.doi.org/10.4236/oalib.1101768.10.4236/oalib.1101768 Search in Google Scholar

3. Anderssen E.L, Diep, D.B., Nes, I.F., Eijsink, V.G.H. & Nissen-Meyer J. (1998). Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol., 64(6),2269-72. doi: 10.1128/AEM.64.6.2269-2272.1998.10.1128/AEM.64.6.2269-2272.19981063119603847 Search in Google Scholar

4. Bartkiene, E., Vidmantiene, D., Juodeikiene, G., Viskielis, P. & Urbanoviciene, D. (2013). Lactic Acid Fermentation of Tomato: Effects on cis/trans Lycopene Isomer Ratio, b-Carotene Mass Fraction and Formation of L(+)- and D(–)-Lactic Acid. Food Technol. Biotechnol., 51(4), 471-478. Search in Google Scholar

5. Bonczar, G., Wszołek, M., Walczycka, M., Żebrowska, A. & Maciejowski, K. (2011). Wpływ wybranych czynników na aktywność wody i jakość mikrobiologiczną miękkich serów z mleka owczego. Żywność. Nauka. Technologia. Jakość. 3(76), 98-108. (In Polish). Search in Google Scholar

6. Cai, Y.Z., Sun, M., Xing, J., Luo, Q. & Corke, H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 78(25), 2872-88. doi: 10.1016/j.lfs.2005.11.00410.1016/j.lfs.2005.11.00416325868 Search in Google Scholar

7. Czyżowska, A., Klewicka, E. & Libudzisz, Z. (2006). The influence of lactic acid fermentation process of red beet juice on the stability of biologically active colorants. Eur. Food Res. Technol., 223, 110-116. https://doi.org/10.1007/s00217-005-0159-y10.1007/s00217-005-0159-y Search in Google Scholar

8. Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol., 33(1), 1–10. https://doi.org/10.1016/j.fm.2012.09.003.10.1016/j.fm.2012.09.00323122495 Search in Google Scholar

9. Di Cagno, R., Filannino, P. & Gobbetti, M. (2016). Fermented foods: fermented vegetables and other products, In: Encycl. Food Health, Caballero, B., Finglas, P.M. & Toldrá, F. (Eds.), pp. 668-674, Elsevier, Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00284-1.10.1016/B978-0-12-384947-2.00284-1 Search in Google Scholar

10. El-Fattah, A., Sakr, S., El-Dieb, S. & Elkashef, H. (2016). Angiotensin-converting enzyme inhibition and antioxidant activity of commercial dairy starter cultures. Food Sci. Biotechnol., 25(6), 1745-1751. doi: 10.1007/s10068-016-0266-5.10.1007/s10068-016-0266-5604922230263470 Search in Google Scholar

11. El-Sayed, A.A., Rabie, M. A., El-Maaty, S. M. A. & El-Nemr, S.E.A. (2018). Fermented tomato juice (Lycopersicon esculentum mill.) produced via lactic acid bacteria during cold storage. Carpath. J. Food Sci. Technol., 10(1), 5-18. Search in Google Scholar

12. Galanis, A., Kourkoutas, Y., Tassou, Ch.C. & Chorianopoulos, N. (2015). Detection And Identification Of Probiotic Lactobacillus Plantarum Strains By Multiplex Pcr Using Rapd-Derived Primers. Int. J. Mol. Sci., 16(10), 25141-25153. doi: 10.3390/ijms161025141.10.3390/ijms161025141463279526506345 Search in Google Scholar

13. Garcia, C., Guerine M., Souidi K. & Remize F. (2020). Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages., 6(1), 8; https://doi.org/10.3390/beverages6010008.10.3390/beverages6010008 Search in Google Scholar

14. Gościnna, K., J. Czapski, J. Mikołajczyk-Bator, K. & Kidoń, M. (2012). Content betalain pigments, nitrates and antioxidant capacity of beetroot juices depending on cultivars and the size of beetroot roots. Apar. Badaw. Dydakt. 17(3), 85-90. (In Polish). Search in Google Scholar

15. Guldiken, B., Toydemir, G., Nur, M.K., Okur, S., Boyacioglu, D. & Capanoglu, E. (2016). Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility. Int. J. Mol. Sci., 17(6),858. doi:10.3390/ijms17060858.10.3390/ijms17060858492639227258265 Search in Google Scholar

16. Halwani, A.F., Sindi, H.A. & Jambi H.A. (2018). Characterization of physical properties of red beet pigments. J. Biochem. Tech., 9(3), 10-14. Search in Google Scholar

17. Hashemi, S.M.B. & Mahmoodi, M. (2017). Fermentation of Barberry Juice to Produce Probiotic Beverage. Curr. Nutr. Food Sci., 13(3), 204–211. DOI: 10.2174/157340131366617011812312810.2174/1573401313666170118123128 Search in Google Scholar

18. Huang, Y., Wang, H. & Zhu, C. (2019). Effect of Lactic Acid Bacteria Fermentation on Antioxidation and Bioactivity of Hawthorn Pulp. IOP Conf. Ser.: Earth Environ. 267(6), 062056. doi:10.1088/1755-1315/267/6/06205610.1088/1755-1315/267/6/062056 Search in Google Scholar

19. Hur, S.J., Lee, S.Y., Kim, Y.C., Choi, I. & Kim, G.B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160, 346–356. doi: 10.1016/j.foodchem.2014.03.112.10.1016/j.foodchem.2014.03.11224799248 Search in Google Scholar

20. Jabłońska-Ryś, E., Skrzypczak, K., Sławińska, A., Radzki, W. & Gustaw, W. (2019). Lactic acid fermentation of edible mushrooms: tradition, technology, current state of research: A Review. Compr. Rev. Food Sci. Food Saf., 18(3), 265–669. https://doi.org/10.1111/1541-4337.12425.10.1111/1541-4337.1242533336922 Search in Google Scholar

21. Jagannath, A., Kumar, M. & Raju P.S. (2014). Fermentative Stabilization of Betanin Content in Beetroot and Its Loss during Processing and Refrigerated Storage. J. Food Process. Preserv., 39(6), 606-613. https://doi.org/10.1111/jfpp.1226710.1111/jfpp.12267 Search in Google Scholar

22. Jamal P., Hashlamona, A., Jaswir, I., Akbar, I. & Nawawi, W.M.F.W. (2017). Extraction of lycopene from tomato waste using solid state fermentation. Int. Food Res. J., 25(Suppl), 416-421. Search in Google Scholar

23. Klewicka E. (2012). Betacyjaniny-biodostępność i biologiczna aktywność. Żywność. Nauka. Technologia. Jakość 2 (81), 5-21. Search in Google Scholar

24. Kumariya, R., Garsa, A.K., Rajput, Y.S., Sood, S.K., Akhtar, N. & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog., 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002.10.1016/j.micpath.2019.01.00230610901 Search in Google Scholar

25. Li, Z., Teng, J., Lyu, Y., Hu, X., Zhao, Y., & Wang, M. (2019). Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus plantarum ATCC14917. Molecules, 24(1), 51. https://doi.org/10.3390/molecules2401005110.3390/molecules24010051633721430586844 Search in Google Scholar

26. Mousavia, Z.E., Mousavia, S.M., Razavia, S.H., Hadinejada, M., Emam-Djomeha, Z. & Mirzapoura, M. (2013). Effect of Fermentation of Pomegranate Juice by Lactobacillus plantarum and Lactobacillus acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 27(1), 1-13. DOI: 10.1080/08905436.2012.724037.10.1080/08905436.2012.724037 Search in Google Scholar

27. Mustopa, A.Z., Murtiyaningsih H., Fatimah, F. & Suharsono S. (2016). Cloning and Heterologous Expression of Extracellular Plantaricin F Produced by Lactobacillus plantarum S34 Isolated from “Bekasam” in Lactococcus lactis. Microbiol. Indones., 10(3), 95-106. https://doi.org/10.5454/mi.10.3.310.5454/mi.10.3.3 Search in Google Scholar

28. Nazzaro, F., Fratianni, F., Sada, A. & Orlando, P. (2008). Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. J. Sci. Food Agric., 88(13), 2271–2276. https://Doi.Org/10.1002/Jsfa.334310.1002/jsfa.3343 Search in Google Scholar

29. Othman, N.B., Roblain, D., Chammen, N., Thonart, P. & Hamdi, M. (2009). Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem., 116(3), 662–669. https://doi.org/10.1016/j.foodchem.2009.02.08410.1016/j.foodchem.2009.02.084 Search in Google Scholar

30. Panghal, A., Virkar, K., Kuma,r V., Dhull, S.B., Gat, Y. & Chhikara N. (2017). Development of Probiotic Beetroot Drink. Curr. Res. Nutr. Food Sci., 5(3), 257-262. http://dx.doi.org/10.12944/CRNFSJ.5.3.10.10.12944/CRNFSJ.5.3.10 Search in Google Scholar

31. PN-90/A-75101/02. Przetwory owocowe i warzywne. Przygotowanie próbek i metody badań fizykochemicznych. Oznaczanie zawartości ekstraktu ogólnego. (In Polish) Search in Google Scholar

32. Ranveer, R.C., Patil, S.N. & Sahoo, A.K. (2013). Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process., 91(4), 370-375. https://doi.org/10.1016/j.fbp.2013.01.00610.1016/j.fbp.2013.01.006 Search in Google Scholar

33. Rizzello, C.G., Filannino, P., Di Cagno, R., Calasso, M. & Gobbetti, I M. (2014). Quorum-Sensing Regulation of Constitutive Plantaricin by Lactobacillus plantarum Strains under a Model System for Vegetables and Fruits. Appl Environ Microbiol. 80(2), 777–787. doi:10.1128/aem.03224-1310.1128/AEM.03224-13391108324242246 Search in Google Scholar

34. Rojo-Bezares, B., Saenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F. & Torres, C. (2007). Cocultureinducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol., 24(5), 482-491. DOI: 10.1016/j.fm.2006.09.003.10.1016/j.fm.2006.09.00317367681 Search in Google Scholar

35. Ronghao, C., Wenxue, C., Haiming, C., Guanfei, Z. & Weijun, C. (2018). Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual., 2018, Article ID 9490435, 1-12. https://doi.org/10.1155/2018/949043510.1155/2018/9490435 Search in Google Scholar

36. Seelam, N.S., Akula, H., Katike, U., Obulam, V.S.R. (2017). Production, characterization and optimization of fermented tomato and carrot juices by using Lysinibacillus sphaericus isolate. J. Appl. Biol. Biotechnol., 5 (4), 66-75. DOI: 10.7324/JABB.2017.5041010.7324/JABB.2017.50410 Search in Google Scholar

37. Skrzypczak, K., Gustaw, K., Jabłońska-Ryś, E., Sławińska, A., Gustaw, W. & Winiarczyk, S. (2020). Spontaneously fermented fruiting bodies of Agaricus bisporus as a valuable source of new isolates of lactic acid bacteria with functional potential. Foods, 9(11), 1631. https://doi.org/10.3390/foods9111631.10.3390/foods9111631769519433171613 Search in Google Scholar

38. Stintzing, F.C. & Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food and in human nutrition. Trends in Food Sci. Technol. 15(1), 19–38. https://doi.org/10.1016/j.tifs.2003.07.00410.1016/j.tifs.2003.07.004 Search in Google Scholar

39. Suwanaruang, T. (2016). Analyzing Lycopene Content in Fruits. Agric. Agric. Sci. Procedia, 11, 46-48. https://doi.org/10.1016/j.aaspro.2016.12.00810.1016/j.aaspro.2016.12.008 Search in Google Scholar

40. Szutowska, J. & Gwiazdowska, D. (2020). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch. Microbiol., 203, 975–988. https://doi.org/10.1007/s00203-020-02095-4.10.1007/s00203-020-02095-4796585833104821 Search in Google Scholar

41. Torres, S., Verón, H., Contreras, L.& Isla, M.I. (2020). An overview of plant-autochthonous microorganisms and fermented vegetable foods. Food Sci. Hum. Well., 9(2), 112-123. https://doi.org/10.1016/j.fshw.2020.02.006.10.1016/j.fshw.2020.02.006 Search in Google Scholar

42. Vera-Pingitore, E., Jimenez, M. Eugenia, Dallagnol, A., Belfiore, C., Fontana, C., Fontana, P., von Wright, A., Vignolo, G., & Plumed-Ferrer, C. (2016). Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT - Food Sci. Technol., 71, 288-294. https://doi.org/10.1016/j.lwt.2016.03.046.10.1016/j.lwt.2016.03.046 Search in Google Scholar

43. Yang, S.C., Lin, C.H., Sung, C.T. & Fang, J.Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol., 5:241. Erratum in: Front Microbiol. 2014;5:683. doi: 10.3389/fmicb.2014.00241.10.3389/fmicb.2014.00241403361224904554 Search in Google Scholar

44. Yoon, K.Y., Woodams, E.E. & Hang, Y.D. (2004). Probiotication of tomato juice by lactic acid bacteria. J. Microbiol., 42(4), 315-318. Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology