Acceso abierto

Ethanolic Extracts from Agro-Industrial Co-Products Enhance Oxidative Stability of Candelilla Wax or Celluloses Derivatives Oleogels


Cite

1. AOAC (1999). Official Method 965.33: Peroxide value of oils and fats. Official Method of Analysis of AOAC International (16th Ed.), Washington, DC: AOAC. Search in Google Scholar

2. Babbar, N., Oberoi, H. S., Sandhu, S. K., & Bhargav, V. K. (2014). Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food Science and Technology, 51: 2568-2575. DOI:10.1007/s13197-012-0754-410.1007/s13197-012-0754-4419026525328197 Search in Google Scholar

3. Blasi, F., & Cossignani, L. (2020). An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes, 8(8): 956. DOI: 10.3390/pr808095610.3390/pr8080956 Search in Google Scholar

4. Calligaris, S., Mirolo, G., Da Pieve, S., Arrighetti, S. & Nicoli, M. C. (2013). Effect of oil type on formation, structure and thermal properties of γ-oryzanol and β-sitosterol-based organogels, Food Biophysics, 9: 69-75. DOI: 10.1007/s11483-013-9318-z10.1007/s11483-013-9318-z Search in Google Scholar

5. Davidovich-Pinhas, CP M., Barbut, S., & Marangoni, A. G. (2015b). The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydrate Polymers, 127: 355-362. DOI: 10.1016/j.carbpol.2015.03.08510.1016/j.carbpol.2015.03.08525965494 Search in Google Scholar

6. Davidovich-Pinhas, M. (2019). Oil structuring using polysaccharides. Current Opinion in Food Science, 27: 29-35. DOI: 10.1016/j.cofs.2019.04.006y Search in Google Scholar

7. Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2015a). The gelation of oil using ethyl cellulose. Carbohydrate Polymers, 117: 869-878. DOI: 10.1016/j.carbpol.2014.10.03510.1016/j.carbpol.2014.10.03525498711 Search in Google Scholar

8. Der, G., & Everitt B. S. (2001). A Handbook of Statistical Analyses using SAS. London: Chapman & Hall/CRC, pp. 101-116.10.1201/9781420057553 Search in Google Scholar

9. Dey, T., Kim, D. A., & Marangoni, A. G. (2011) Ethylcellulose Oleogels. In Marangoni, A. G., & Garti, N (Eds.), Edible Oleogels: Structure and Health Implications (pp. 295-312). Urbana: AOCS Press.10.1016/B978-0-9830791-1-8.50016-4 Search in Google Scholar

10. Eisa, A. H., Laufer, S., Rosen-Kligvasser, J., & Davidovich-Pinhas, M. (2020). Stabilization of ethyl-cellulose oleogel network using lauric acid. European Journal of Lipid Science and Technology, 122(2): 1900044. DOI: 10.1002/ejlt.20190004410.1002/ejlt.201900044 Search in Google Scholar

11. Fawole, O. A., & Opara, U. L. (2016). Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate co-products subjected to in vitro digestion. BMC Complementary and Alternative Medicine, 16:358. DOI: 10.1186/s12906-016-1343-210.1186/s12906-016-1343-2502048827618992 Search in Google Scholar

12. Freitas, I. R., Machado, T.L.S., Luzia, D.M.M., & Jorge, N. (2020). Tomato waste extract (Lycopersicon esculentum) as a natural antioxidant in soybean oil under heating. Journal of Bioenergy and Food Science, 7: e2852020JBFS. DOI: 10.18067/jbfs.v7i3.285 Search in Google Scholar

13. Ghorbani, M., Ganjloo, A., & Bimakr, M. (2016). Evaluation the effect of different solvents on total phenolic content and antioxidant activity of pea (Pisum sativum L.) pod extract. Iranian Journal of Food Science and Technology, 14(64): 92-83. Search in Google Scholar

14. Gravelle, A. J., Barbut, S., & Marangoni, A. G. (2012). Ethylcellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Research International, 48:578-583. DOI: 10.1016/j.foodres.2012.05.02010.1016/j.foodres.2012.05.020 Search in Google Scholar

15. Gravelle, A. J., Davidovich-Pinhas, M., Zetzl, A.K., Barbut, S., & Marangoni, A. G. (2016). Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydrate Polymers, 135:169-179. DOI:10.1016/j.carbpol.2015.08.05010.1016/j.carbpol.2015.08.05026453865 Search in Google Scholar

16. Hwang, H.-S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 26:101657. DOI: 10.1016/j.bcab.2020.10165710.1016/j.bcab.2020.101657 Search in Google Scholar

17. Kamali, E., Sahari, M. A., Barzegar, M., & Gavlighi, H. A. (2019). Novel oleogel formulation based on amaranth oil: Physicochemical characterization. Food Science & Nutrition, 7(6), 1986-1996. DOI: 10.1002/fsn3.101810.1002/fsn3.1018659338331289646 Search in Google Scholar

18. Kordjazi, Z., & Ajji, A. (2020). Partially miscible polymer blends of ethyl cellulose and hydroxyl terminated polybutadiene. Polymer, 211: 123067. DOI: 10.1016/j.polymer.2020.12306710.1016/j.polymer.2020.123067 Search in Google Scholar

19. Lim, J., Hwang, H.-S., & Lee, S. (2017). Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties. Applied Biological Chemistry, 60: 17-22. DOI:10.1007/s13765-016-0243-y10.1007/s13765-016-0243-y Search in Google Scholar

20. Martins, A. J., Cerqueira, M. A., Cunha, R.L., & Vicente, A.A. (2017). Fortified beeswax oleogels: effect of β-carotene on gel structure and oxidative stability. Food & Function, 8: 4241-4250. DOI:10.1039/c7fo00953d10.1039/C7FO00953D Search in Google Scholar

21. Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Suárez, M. J. (2012). Broad bean and pea by-products as sources of fibre-rich ingredients: potential antioxidant activity measured in vitro. Journal of the Science of Food and Agriculture, 92: 697-703. DOI: 10.1002/jsfa.463310.1002/jsfa.463321919006 Search in Google Scholar

22. Naumovski, N., Ranadheera, S., Thomas, J., Georgousopoulou, E., & Mellor, D. (2017). Bioactive Compounds in agricultural and Food production Waste. In Vuong, Q.V. (Ed.), Utilisation of Bioactive Compounds from Agricultural and Food Waste (pp-1-26). Boca Raton: CRC Press. DOI: 10.1201/9781315151540-110.1201/9781315151540-1 Search in Google Scholar

23. Öğütcü, M., Arifoğlu, N., & Yılmaz, E (2015). Preparation and characterization of virgin olive oil-beeswax oleogel emulsion products. Journal of American Oil Chemists’ Society, 92: 459-471. DOI:10.1007/s11746-015-2615-610.1007/s11746-015-2615-6 Search in Google Scholar

24. Park, J.-H., Lee, M, & Park, E (2014). Antioxidant activity of orange flesh and peel extracted with various solvents. Preventive Nutrition and Food Science, 19: 291. DOI: 10.3746/pnf.2014.19.4.29110.3746/pnf.2014.19.4.291428732125580393 Search in Google Scholar

25. Pérez-Monterrosa, E. J., Ciro-Velásquez, H. J., & Arango-Tobón, J. C. (2016). Study of the crystallization and polymorphic structures formed in oleogels from avocado oil. Revista de la Facultad Nacional de Agronomía de Medellín, 69: 7945-7954. DOI: 10.15446/rfna.v69n2.5913910.15446/rfna.v69n2.59139 Search in Google Scholar

26. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radical Biology and Medicine, 26: 1231-1237. DOI: 10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3 Search in Google Scholar

27. Salta, F. N., Mylona, A., Chiou, A., Boskou, G., & Andrikopoulos, N. K. (2007). Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Science and Technology International, 13(6): 413-421. DOI: 10.1177/108201320808956310.1177/1082013208089563 Search in Google Scholar

28. Singlenton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144-158. Search in Google Scholar

29. Toro-Vázquez, J. F., Morales-Rueda, A., Dibildox-Alvarado, E., Charo-Alonso, M., Alonzo-Macías, M., & González-Chávez, M. M. (2007). Thermal and textural properties of organogels developed by Candelilla wax in safflower oil. Journal of American Oil Chemists’ Society, 84: 989-1000. DOI: 10.1007/s11746-007-1139-010.1007/s11746-007-1139-0 Search in Google Scholar

30. Totosaus, A., González-González, R., & Fragoso, M. (2016). Influence of the type of cellulosic derivatives on texture, oxidative and thermal stability of soybean oil oleogel. Grasas y Aceites, 67: e152. DOI: 10.3989/gya.044016110.3989/gya.0440161 Search in Google Scholar

31. Wang, X., Wang, S.-J., Nan, Y., & Liu, G.-Q. (2020). The effects of oil type and crystallization temperature on the physical properties of vitamin C-loaded oleogels prepared by an emulsiontemplated approach. Food & Function, 11: 8028-8037. DOI: 10.1039/C9FO02479D10.1039/C9FO02479D Search in Google Scholar

32. Winkler-Moser, J. K., Anderson, J., Felker, F. C., & Hwang, H.-S. (2019). Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and oleogels. Journal of the American Oil Chemists’ Society, 96: 1125-1142. DOI: 10.1002/aocs.1228010.1002/aocs.12280 Search in Google Scholar

33. Yi, B., Kim, M. J., Lee, S. Y., & Lee, J. (2017). Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Science and Biotechnology, 26: 79-87. DOI: 10.1007/s10068-017-0011-810.1007/s10068-017-0011-8604946530263513 Search in Google Scholar

34. Yun, J., & Surh, J. (2012). Fatty acid composition a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Preventive Nutrition and Food Science, 17: 158-165. DOI: 10.3746/pnf.2012.17.2.15 Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology