Acceso abierto

Utilization of Ozone for the Improvement of Mentha piperita L. Quality by Reduction of Microbial Load and Impact of the Process on the Herb Properties


Cite

1. Achen, M., Yousef, A.E. (2001). Efficacy of Ozone Against Escherichia coli O157:H7 on Apples. Journal Of Food Science 66 (9), 1380-1385.10.1111/j.1365-2621.2001.tb15218.xSearch in Google Scholar

2. Adaszyńska, M., Swarewicz, M., Markowska, A., Szczupak, A., Jadczak, D. (2013). Skład chemiczny i właściwości przeciwdrobnoustrojowe olejku eterycznego i ekstraktu z mięty pieprzowej odmiany ‘Asia’. Żywność. Nauka. Technologia. Jakość, 2 (87), 116-125.Search in Google Scholar

3. Akbas, M.Y., Ozdemir, M. (2008). Effect of gaseous ozone on microbial inactivation and sensory of flaked red pepper. International Journal of Food Science and Technology, 43, 1657-1662 DOI: 10.1111/j.1365-2621.2008.01722.x10.1111/j.1365-2621.2008.01722.xSearch in Google Scholar

4. Alexopoulos, A., Plessas, S., Ceciu, S., Lazar, V., Mantzourani, I., Voidarou, C., Stavropoulou, E., Bezirtzoglou, E. (2013). Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control 30, 491-496 http://dx.doi.org/10.1016/j.foodcont.2012.09.01810.1016/j.foodcont.2012.09.018Search in Google Scholar

5. Alwi, N.A., Ali, A. (2014). Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell pepper using gaseous ozone. Food Control, 46, 304-311.10.1016/j.foodcont.2014.05.037Search in Google Scholar

6. Balawejder, M., Szpyrka, E., Antos, P., Józewczyk, R., Piechowicz, B., Sadło, S. (2014). Method for Reduction of Pesticide Residue Levels in Raspberry and Blackcurrant Based on Utilization of Ozone. Ochrona Srodowiska i Zasobów Naturalnych, 25 (4), 1-5. 10.2478/oszn-2014-001810.2478/oszn-2014-0018Search in Google Scholar

7. Brodowska, A., Śmigielski, K., Nowak, A. (2014). Comparison of methods of herbs and spices decontamination. Chemik, 68, 87-102.Search in Google Scholar

8. Doğan Y. & Gürler Z. (2018). The effect of natural microbiota on colour, texture and sensory properties of sucuk during the production. Ankara Universitesi Veteriner Fakultesi Dergisi. 65. 137-143. 10.1501/Vetfak_0000002839.10.1501/Vetfak_0000002839Search in Google Scholar

9. Khadre, M.A., Yousel, A.E., Kim, J.G. (2001). Microbiological Aspects of Ozone Applications in food – a Review. Journal of Food Science, 66 (9), 1242-1250.10.1111/j.1365-2621.2001.tb15196.xSearch in Google Scholar

10. Kunicka-Styczyńska, A., Śmigielski, K. (2011). Microbiological safety of herbal raw materials. In Polish Przemysł spożywczy, 65 (6), 50-53.Search in Google Scholar

11. Kephalopoulos, S., Kotzias, D., Koistinen, K. (2007). Impact of Ozone-initiated Terpene Chemistry on Indoor Air Quality and Human Health” European Commission Joint Research Centre - Institute for Health & Consumer Protection, Physical & Chemical Exposure Unit Report No 26, http://www.inive.org/medias/ECA/ECA_Report26.pdf accessed 11.10.2019Search in Google Scholar

12. Piechowiak, T., Antos, P., Kosowski, P., Skrobacz, K., Józefczyk, R., & Balawejder, M. (2019a). Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agricultural and Food Science, 28 (1), 35-44. https://doi.org/10.23986/afsci.7029110.23986/afsci.70291Search in Google Scholar

13. Piechowiak T., Antos P., Józefczyk R., Kosowski P., Skrobacz K. & Balawejder M. (2019b). Impact of Ozonation Process on the Microbiological Contamination and Antioxidant Capacity of Highbush Blueberry (Vaccinum corymbosum L.) Fruit during Cold Storage. Ozone: Science & Engineering, 41(4) https://doi.org/10.1080/01919512.2018.154092210.1080/01919512.2018.1540922Search in Google Scholar

14. Schweiggert, U., Mix, K., Schieber, A., Carle, R. (2005). An innovative process for the production of spices through immediate thermal treatment of the plant material. Innovative Food Science and Emerging Technologies 6, 143–153. http://dx.doi.org/10.1016/j.ifset.2004.11.00610.1016/j.ifset.2004.11.006Search in Google Scholar

15. Smilanick JL. Use of ozone in storage and packing facilities. Washington Tree Fruit Postharvest Conference, WSU—TFREC Postharvest Information Network 2003; 1-10, Electronic source address: http://postharvest.tfrec.wsu.edu/PC2003H.pdfSearch in Google Scholar

16. Song. W.J., Sung, H.J., Kim, S.Y., Kim, K.P., Ryu, S., Kang, D.H. (2014). Inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in black pepper and red pepper by gamma irradiation. International Journal of Food Microbiology, 172, 125-129. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.01710.1016/j.ijfoodmicro.2013.11.01724370971Search in Google Scholar

17. Steinka, I., Misiewicz, Ł., Kukułowicz, A., Ćwikliński, M., Dmowski, P., Sznajdrowska, A. (2011), Próba oceny jakości mikrobiologicznej wybranych suszy roślinnych stosowanych jako używki i preparaty o znaczeniu leczniczym. Akadaemia Morska w Gdyni, 68, 13-20.Search in Google Scholar

18. Sung, H.J., Song, W.J., Kim, K.P., Ryu, S., Kang, D.H. (2014). Combination effect of ozone and heat treatments for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice. International Journal of Food Microbiology, 171, 147-153. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.00110.1016/j.ijfoodmicro.2013.11.00124362006Search in Google Scholar

19. Torlak, E., Sert, D., Ulca, P. (2013). Efficacy of gaseous ozone against Salmonella and microbial population on dried oregano. International Journal of Food Microbiology, 165, 276-280. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.05.03010.1016/j.ijfoodmicro.2013.05.030Search in Google Scholar

20. Wani, S., Maker, J.K., Thompson, J.R., Barnes, J., Singleton, I. (2015). Effect of Ozone Treatment on Inactivation of Escherichia coli and Listeria sp. on spinach. Agriculture, 5, 155-169.10.3390/agriculture502015510.3390/agriculture5020155Search in Google Scholar

21. Weschler, C.J., Shields, H.C. (1999). Indoor ozone/terpene reactions as a source of indoor particles. Atmospheric Environment, 33, 2301-2312.http://dx.doi.org/10.1016/S1352-2310(99)00083-710.1016/S1352-2310(99)00083-7Search in Google Scholar

22. Wójcik-Stopczyńska, B., Jakubowska, B., Reichert, M. (2009). Microbiological contamination of dried culinary herbs. Herba Polonica, 3 (55), 206-213. http://dx.doi.org/10.1016/j.foodcont.2014.05.03710.1016/j.foodcont.2014.05.037Search in Google Scholar

23. Wysok, B., Uradziński, J., Gomólka-Pawlicka, M. (2006). Ozone as an alternative disinfectant – a Review. Polish Journal of Food and Nutrition Sciences, 15 (56), 3–8.Search in Google Scholar

24. Zhao, J., Cranston, P.M. (1995). Microbial decontamination of black pepper by ozone and the effect of the treatment on volatile oil constituents of the spice. Journal Of the Science of Food and Agriculture, 68,11–18. doi: 10.1002/jsfa.274068010310.1002/jsfa.2740680103Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology