Acceso abierto

Feed Additives of Bacterial Origin as an Immunoprotective or Immunostimulating Factor – A Review


Cite

Abdo Z., LeCureux J., Dean J.A. (2019). Impact of oral probiotic Lactobacillus acidophilus vaccine strains on the immune response and gut microbiome of mice. PLoS One, 14: e0225842. Search in Google Scholar

Aguilar-Toaláa J.E., Garcia-Varelab R., Garciac H.S., Mata-Harod V., González-Córdovaa A.F., Vallejo-Cordobaa B., Hernández-Mendozaa A. (2018). Review postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 75: 105–114. Search in Google Scholar

Akhtar M., Chen Y., Ma Z., Zhang X., Shi D., Khan J.A., Liu H. (2022). Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim. Nutr., 8: 350e360. Search in Google Scholar

Alagawany M., Elnesr S.S., Farag M.R., Abd El-Hack M.E., Barkat R.A., Gabr A.A., Foda M.A., Noreldin A.E., Khafaga A.F., El-Sabrout K., Elwan H.A.M., Tiwari R., Yatoo M.I., Michalak I., Di Cerbo A., Dhama K. (2021). Potential role of important nutraceuticals in poultry performance and health – a comprehensive review. Res. Vet. Sci., 137: 9–29. Search in Google Scholar

Alam Z., Shang X., Effat K., Kanwal F., He X., Li Y., Xu Ch., Niu W., War A.R., Zhang Y. (2022). The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer. J. Food Biochem., 46: e14302. Search in Google Scholar

Alizadeh M., Astill J., Alqazlan N., Shojadoost B., Taha-Abdelaziz K., Bavananthasivam J., Doost J.S., Sedeghiisfahani N., Sharif S. (2022). In ovo co-administration of vitamins (A and D) and probiotic lactobacilli modulates immune responses in broiler chickens. Poultry Sci., 101: 101717. Search in Google Scholar

Al-Shawi S.G., Dang D.S., Yousif A.Y., Al-Younis Z.K., Najm T.A., Matarneh S.K. (2020). The potential use of probiotics to improve animal health, efficiency, and meat quality: a review. Agriculture, 10: 452. Search in Google Scholar

Andersen A.D., Nguyen D.N., Langhorn L., Renes I.B., van Elburg R.M., Hartog A., Tims S., van de Looij Y., Sangild P.T., Thymann T. (2019). Synbiotics combined with glutamine stimulate brain development and the immune system in preterm pigs. J. Nutr., 149: 36–45. Search in Google Scholar

Ansari F., Samakkhah S.A., Bahadori A., Jafari S.M., Ziaee M., Khodayari M.T., Pourjafar H. (2021). Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit. Rev. Food Sci. Nutr., doi:10.1080/10408398.2021.1949577 Search in Google Scholar

Anwar H., Irfan S., Hussain G., Faisal M.N., Muzaffar H., Mustafa I., Mukhtar I., Malik S., Ullah M.I. (2019). Gut microbiome: A new organ system in body. In: Parasitology and microbiology research, Pacheco G.A.B., Kamboh A.A. (eds). IntechOpen Ltd., London, UK. Search in Google Scholar

Ardissone A.N., de la Cruz D.M., Davis-Richardson A.G., Rechcigl K.T., Li N., Drew J.C., Murgas-Torrazza R., Sharma R., Hudak M.L., Triplett E.W., Neu J. (2014). Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One, 9(3): e90784. Search in Google Scholar

Asgari B., Kermanian F., Yaghoobi M.H., Vaezi A., Soleimanifar F., Yaslianifard S. (2019). The anti-Helicobacter pylori. Effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in stomach tissue of C57BL/6 mice. Visc. Med., 36: 137–143. Search in Google Scholar

Awad W.A., Ghareeb K., Abdel-Raheem S., Böhm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Sci., 88: 49–55. Search in Google Scholar

Azad M.A.K., Gao J., Ma J., Li T., Tan B., Huang X., Yin J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Anim. Nutr., 6: 379e388. Search in Google Scholar

Belkina T.V., Averina O.V., Savenkova E.V., Danilenko V.N. (2021). Human intestinal microbiome and the immune system: The role of probiotics in shaping an immune system unsusceptible to COVID-19 infection. Biol. Bull. Rev., 11: 329–343. Search in Google Scholar

Berer K., Mues M., Koutrolos M., Rasbi Z.A., Boziki M., Johner C., Wekerle H., Krishnamoorthy G. (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 479: 538–541. Search in Google Scholar

Bernardeau M., Guguen M., Vernoux J.P. (2006). Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev., 30: 487–513. Search in Google Scholar

Beski S.S.M, Al-Sardary S.Y.T. (2015). Effects of dietary supplementation of probiotic and synbiotic on broiler chickens hematology and intestinal integrity. Int. J. Poult. Sci., 14: 31–36. Search in Google Scholar

Bielecka M., Biedrzycka E., Majkowska A. (2002). Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res. Int., 35: 125–131. Search in Google Scholar

Blaser M.J. (2006). Who are we? Indigenous microbes and the ecology of human diseases. EMBO Reports, 7: 956–960. Search in Google Scholar

Bogusławska-Tryk M., Ziółkowska E., Sławińska A., Siwek M., Bogucka J. (2021). Modulation of intestinal histology by probiotics, prebiotics and synbiotics delivered in ovo in distinct chicken genotypes. Animals, 11: 3293. Search in Google Scholar

Böhmer B.M., Salisch H., Paulicks B.R., Roth F.X. (2009). Echinacea purpurea as a potential immunostimulatory feed additive in laying hens and fattening pigs by intermittent application. Livest. Sci., 122: 81–85. Search in Google Scholar

Bourebaba Y., Marycz K., Mularczyk M., Bourebaba L. (2022). Post-biotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother., 153: 113138. Search in Google Scholar

Brestenský M., Nitrayová S., Bomba A., Strojný L., Patráš P., Heger J. (2016 a). Effect of probiotics and prebiotics supplemented to the diet of growing pigs on the content of short chain fatty acids in the jejunum and cecum. J. Anim. Sci., 94: 219–221. Search in Google Scholar

Brestenský M., Nitrayová S., Patráš P., Heger J., Nitray J. (2016 b). Effect of the supplementation linseed oil, inulin and horse chestnut into a high fat diet on the fatty acid profile of pigs. Cienc. Rural, 46: 1992–1997. Search in Google Scholar

Broadway P.R., Carrol J.A., Budrick Sanchez N.C. (2015). Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: A review. Microorganisms, 3: 417–427. Search in Google Scholar

Broom L.J., Kogut M.H. (2018). Inflammation: friend or foe for animal production. Poultry Sci., 97: 510–514. Search in Google Scholar

Butler G.M., Giffard R.N., Howard P.M., Stanley G. (2007). Prebiotic and synbiotic fructooligosaccharides administration fails to reduce the severity of experimental colitis in rats. Dis. Coll. Rect., 50: 1061–1069. Search in Google Scholar

Canibe N., Højberg O., Kongsted H., Vodolazska D., Lauridsen C., Nielsen T.S., Schönherz A.A. (2022). Review on preventive measures to reduce post-weaning diarrhoea in piglets. Animals, 12: 2585. Search in Google Scholar

Celi P., Cowieson A.J., Fru-Nji F., Steinert R.E., Kluenter A.-M., Verlhac V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol., 234: 88–100. Search in Google Scholar

Chaudhari A., Dwivedi M.K. (2022). Chapter 1-The concept of probiotics, prebiotics, postbiotics, synbiotics, nutribiotics, and pharmabiotics. In: Probiotics in the prevention and management of human diseases, Dwivedi M., Amaresan N., Sankaranaryanan A., Kemp H. (eds). A Scientific Perspective, Academic Press, Elsevier, pp. 1–11. Search in Google Scholar

Crittenden R., Playne M.J. (2009). Prebiotics. In: Handbook of probiotics and prebiotics, Lee Y.K., Salminen S. (eds). John Wiley & Sons Inc., Hoboken, New York, USA, pp. 535–581. Search in Google Scholar

Csernus B., Czeglédi L. (2020). Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccha-rides in pigs. Arch. Anim. Breed., 63: 325–335. Search in Google Scholar

Czech A., Klebaniuk R., Ognik K. (2006). Influence of mannan-oligosaccharide prebiotic (MOS) and probiotic (Microbisan) feed additives on the haematology and antioxidant parameters of ewe’s blood. Pol. J. Nat. Sci., 3: 171–176. Search in Google Scholar

D’Inca R. (2011). Natural ways to fight E. coli around weaning. Pig Progress, 27: 22–23. Search in Google Scholar

Da Silva M.N., Tagliapietra B.L., Flores V.A., Pereira dos Santos Richards N.S. (2021). In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr. Res. Nutr. Food Sci., 4: 320–325. Search in Google Scholar

Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8: 92. Search in Google Scholar

Davis M.E. (2004). Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci., 82: 1882–1891. Search in Google Scholar

DiGiulio D.B., Romero R., Amogan H.P., Kusanovic J.P., Bik E.M., Gotsch F., Kim Ch.J., Erez O., Edwin S., Relman D.A. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: A molecular and culture-based investigation. PLoS One, 3(8): e3056. Search in Google Scholar

Dong X., Zhang N., Zhou M., Tu Y., Deng K., Diao Q. (2014). Effects of dietary probiotics on growth performance, faecal micro-biota and serum profiles in weaned piglets. Anim. Prod. Sci., 54: 616–621. Search in Google Scholar

El-Banna H.A., El-Zorba H.Y., Atitta T.A., Abd Elatif A. (2010). Effect of probiotic, prebiotic and synbiotic on broiler performance. World App. Sci. J., 11: 388–393. Search in Google Scholar

El-Rahim A. (2017). The role of nutrition in immunity and diseases resistance in rabbits. EJRS, 27: 171–195. Search in Google Scholar

European Commission (EC) (2003). Regulation (EC) No 1831/2003 of The European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Official Journal of the European Union, http://data.europa.eu/eli/reg/2003/1831/oj Search in Google Scholar

European Food Safety Authority (EFSA) (2013). Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). Search in Google Scholar

EFSA J., 15: 1–108. Fathima S., Shanmugasundaram R., Adams D., Selvaraj R.K. (2022). Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods, 11: 1401. Search in Google Scholar

Food and Agricultural Organization of the United Nations (FAO) (2007). Technical meeting on prebiotics: Food Quality and Standards Service (AGNS). Food and Agriculture Organization of the United Nations (FAO) 15–16.09.2007. FAO Technical Meeting Report. Search in Google Scholar

Food and Agricultural Organization of the United Nations and World Health Organization (FAO/WHO) (2002). Report of a joint FAO/ WHO working group on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30.04–01.05.2002, pp. 1–11. Search in Google Scholar

Fooks L.J., Fuller R., Gibson G.R. (1999). Prebiotics, probiotics and human gut microbiology. Int. Dairy J., 9: 53–61. Search in Google Scholar

Fotiadis C.I., Stoidis C.N., Spyropoulos B.G., Zografos E.D. (2008). Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J. Gastroenterol., 14: 6453–6457. Search in Google Scholar

Frence J., Kos B., Svetec I., Zgaga Z., Beganović J., Leboš A., Šušković J. (2009). Synbiotic effect of Lactobacillus helveticus M92 and prebiotics on the intestinal microflora and immune system of mice. J. Dairy Res., 76: 98–104. Search in Google Scholar

Fritz P. (2007). Probiotics and prebiotics-renaissance of a therapeutic principle. Cent. Eur. J. Med., 2: 237–270. Search in Google Scholar

Fuad A.S.M., Amran N.A., Nasruddin N.S., Burhanudin N.S., Dashper S., Arzmi M.H. (2022). The mechanisms of probiotics, prebiotics, synbiotics, and postbiotics in oral cancer management. Probiotics Antimicrob. Proteins, 1: 1–14. Search in Google Scholar

Gainullina M., Volkov A., Dandrawy M., Yusupova G., Yakimov O. (2020). Possible effects of functional feed additive as a growth promoter in turkeys and pigs. BIO Web Conf., 17: 00259. Search in Google Scholar

Gao J., Li Y., Wan Y., Hu T., Liu L., Yang S., Gong Z., Zeng Q., Wei Y., Yang W., Zeng Z., He X., Huang S.H. Cao H. (2019). A novel post-biotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Microbiol., 10: 477. Search in Google Scholar

Gibson G.R., Roberfroid M.B. (2008). Handbook of prebiotics. CRC Press, 1st ed., 504 pp. Search in Google Scholar

Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L. Reimer R.A. Salminen S.J. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491–502. Search in Google Scholar

Górska S., Jarząb A., Gamian A. (2009). Probiotic bacteria in the human gastrointestinal tract as a factor stimulating the immune system (in Polish). Postepy Hig. Med. Dosw., 63: 653–667. Search in Google Scholar

Hamasalim H.J. (2016). Synbiotic as feed additives relating to animal health and performance. Adv. Microbiol., 6: 288–302. Search in Google Scholar

He J., Zhang P., Shen L., Niu L., Tan Y., Chen L., Zhao Y., Bai L., Hao X., Li X., Zhang S., Zhu L. (2020). Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci., 21: 6356. Search in Google Scholar

Heuvel E., Weidauer T. (1999). Role of the non-digestible carbohydrate lactulose in the absorption of calcium. Med. Sci. Monit., 5: 1231–1237. Search in Google Scholar

Higgins J.P., Higgins S.E., Wolfenden A.D., Henderson S.N., Torres-Rodriguez A., Vicente J. L., Hargis B.M., Tellen G. (2010). Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella enteritidis in neonatal broilers. Poultry Sci., 89: 243–247. Search in Google Scholar

Islam M.R., Arthur S., Haynes J., Butts M.R., Nepal N., Sundaram U. (2022). The role of gut microbiota and metabolites in obesity-associated chronic gastrointestinal disorders. Nutrients, 14: 624. Search in Google Scholar

Jacela J.Y., DeRouchey J.M., Tokach M.D., Goodband R.D., Nelssen J.L., Renter D.G., Dritz S.S. (2009). Feed additives for swine: Fact sheets – acidifiers and antibiotics. J. Swine Health Prod., 17: 270–273. Search in Google Scholar

Jha R., Das R., Oak S., Mishra P. (2020). Probiotics (direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals, 10: 1863. Search in Google Scholar

Juśkiewicz J., Semaskaite A., Zduńczyk Z., Wróblewska M., Gružaskas R., Juśkiewicz M. (2007). Minor effect of the dietary combination of probiotic Pediococcus acidilactici with fructooligosaccharides or polysaccharides on beneficial changes in the cecum of rats. Nutr. Res., 27: 133–139. Search in Google Scholar

Kareem K.Y., Ling F.H., Chwen L.T., Foong O.M., Asmara S.A. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog., 14: 23. Search in Google Scholar

Keikha M., Karbalaei M. (2021). Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol., 21: 388–406. Search in Google Scholar

Kiarie E.G., Steelman S., Martinez M. (2022). Does supplementing ß-mannanase modulate the feed-induced immune response and gastrointestinal ecology in poultry and pigs? An appraisal. Anim. Sci., 3: 875095. Search in Google Scholar

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M., Kiczorowski P., Winiarska-Mieczan A. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci., 17: 605–625. Search in Google Scholar

Kim K., He Y., Xiong X., Ehrlich A., Li X., Raybould H., Atwill E.R., Maga E.A., Jørgensen J., Liu Y. (2019). Dietary supplementation of Bacillus subtilis influenced intestinal health of weaned pigs experimentally infected with a pathogenic E. coli. J. Anim. Sci. Biotechnol., 10: 52. Search in Google Scholar

Kogan G., Kocher A. (2007). Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest. Sci., 109: 161–165. Search in Google Scholar

Kogut M.H., Lee A., Santinz E. (2020). Microbiome and pathogen interaction with the immune system. Poultry Sci., 99: 1906–1913. Search in Google Scholar

Koyun O.Y., Callaway T.R., Nisbet D.J., Anderson R.C. (2022). Annual review of food science and technology innovative treatments enhancing the functionality of gut microbiota to improve quality and microbiological safety of foods of animal origin. Annu. Rev. Food Sci. Technol., 13: 433–461. Search in Google Scholar

Kvakova M., Bertkova I., Stofilova J., Savidge T.C. (2021). Co-encapsulated synbiotics and immobilized probiotics in human health and gut microbiota. Foods, 10: 1297. Search in Google Scholar

Kwak M.J., Tan P.L., Oh J.K., Chae K.S., Kim J., Kim S.H., Eun J.S., Chee S.W., Kang D.K., Kim S.H., Whang K.Y. (2021). The effects of multispecies probiotic formulations on growth performance, hepatic metabolism, intestinal integrity and fecal microbiota in growing-finishing pigs. Anim. Feed Sci. Technol., 274: 114833. Search in Google Scholar

Lambo M.T., Chang X., Liu D. (2021). The recent trend in the use of multistrain probiotics in livestock production: An overview. Animals, 11: 2805. Search in Google Scholar

Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. (2017). Dysbiosis and the immune system. Nat. Rev. Immunol., 17: 219–232. Search in Google Scholar

Li X., Wu X., Ma W., Chen W., Zhao F. (2022). Effects of dietary xylooligosaccharides supplementation on the intestinal morphology, nitrogen metabolism, faecal ammonia release, antioxidant capacity, and immune organ indices of broilers. Ital. J. Anim. Sci., 21: 1352–1361. Search in Google Scholar

Liao S.F., Nyachoti M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr., 3: 331–343. Search in Google Scholar

Liong M.T., Shah N.P. (2005). Optimization of cholesterol removal by probiotics in the presence of prebiotics by using a response surface method. Appl. Environ. Microbiol., 71: 1745–1753. Search in Google Scholar

Liu J., Kandasamz S., Zhang J., Kirby Ch.W., Karakach T., Hafting J., Critchley A.T., Evans F., Prithiviraj B. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructooligosaccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement. Altern. Med., 15: 279. Search in Google Scholar

Liu J.B., Cao S.C., Liu J., Xie Y.N., Zhang H.F. (2018). Effect of probiotics and xylooligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs. AJAS, 31: 1660–1669. Search in Google Scholar

Lopez G., Ross G., Perez-Conesa D. (2007). Effect of probiotics, prebiotics and synbiotics follow-up infant formulas on large intestine morphology and bone mineralization in rats. Food Sci. Technol. Int., 13: 69–77. Search in Google Scholar

Lynegaard J.C., Kjeldsen N.J., Bache J.K., Weber N.R., Hansen C.F., Nielsen J.P., Amdi C. (2021). Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhea treatments and average daily gain. Animal, 15: 100075. Search in Google Scholar

Macfarlane G.T., Steed H., Macfarlane S. (2008). Bacterial metabolism and health-related effects of galactooligosaccharides and other prebiotics. J. Appl. Microbiol., 104: 305–344. Search in Google Scholar

Mariam S., Zegeye N., Tariku T., Andargie E., Endalafer N., Aseffa A. (2014). Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus. BMC Res. Notes., 7: 606. Search in Google Scholar

Markowiak P., Śliżewska K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog., 10: 21. Search in Google Scholar

Markowiak-Kopeć P., Śliżewska K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12: 1107. Search in Google Scholar

Marshall J.S., Warrington R., Watson W., Kim H.L. (2018). An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol., 14 (Suppl 2): 49. Search in Google Scholar

Martyniak A., Medyńska-Przęczek A., Wędrychowicz A., Skoczeń S., Tomasik P.J. (2021). Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules, 11: 1903. Search in Google Scholar

Mego M., Holec V., Drgone L., Hainova K., Ciernikova S., Zajac V. (2013). Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement. Ther. Med., 21: 712–723. Search in Google Scholar

Melara E.G., Avellaneda M.C., Valdivié M., García-Hernández Y., Aroche R., Martínez Y. (2022). Probiotics: Symbiotic relationship with the animal host. Animals, 12: 719. Search in Google Scholar

Mizak L., Gryko R., Kwiatek M., Parasion S. (2012). Probiotics in animal nutrition (in Polish). Życie Wet., 87: 736–742. Search in Google Scholar

Moeller A.H., Suzuki T.A., Phifer-Rixey M., Nachman M.W. (2018). Transmission modes of the mammalian gut microbiota. Science, 362: 453–457. Search in Google Scholar

Mohammed A., Mahmoud M., Murugesan R., Cheng H. (2021). Effect of a synbiotic supplement on fear response and memory assessment of broiler chickens subjected to heat stress. Animals, 11: 427. Search in Google Scholar

Moles L., Gómez M., Heilin H., Bustos G., Fuentes S., de Vos W., Fernández L., Rodríguez J.M., Jiménez E. (2013). Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One, 8(6): e66986. Search in Google Scholar

Mondal H., Thomas J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquac. Int., 30: 1971–2000. Search in Google Scholar

Monteagudo-Mera A., Rastall R.A., Gibson G.R., Charalampopoulos D., Chatzifragkou A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol., 103: 6463–6472. Search in Google Scholar

Muhammad A.U.R., Xia C.Q., Cao B.H. (2016). Dietary forage concentration and particle size affect sorting, feeding behaviour, in-take and growth of Chinese Holstein male calves. J. Anim. Physiol. Anim. Nutr., 80: 217–223. Search in Google Scholar

Muzaffar K., Jan R., Bhat N.A., Gani A., Shagoo M.A. (2021). Commercially available probiotics and prebiotics used in human and animal nutrition. In: Advances in probiotics. Elsevier, pp. 417–435. Search in Google Scholar

Naquid I.A., Owen J.P., Maddison B.C., Gardner D.S., Foster N., Tchórzewska M.A., La Ragione R.M., Gough K.C. (2015). Pre-biotic and probiotic agents enhance antibody-based immune responses to Salmonella typhimurium infection in pigs. Anim. Feed Sci. Tech., 201: 57–65. Search in Google Scholar

Nataraj B.H., Ali S.A., Behare P.V., Yadav H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Fact., 19: 168. Search in Google Scholar

Netherwood T., Gilbert H.J., Parker D.S., O’Donnell A.G. (1999). Probiotics shown to change bacterial community structure in the avian gastrointestinal tract. Appl. Environ. Microbiol., 65: 5134–5138. Search in Google Scholar

Newman K.E. (1994). Mannanoligosaccharides: Natural polymers with significant impact on the gastrointestinal microflora and the immune system. Biotechnology in the Feed Industry. Proc. Alltech’s Tenth Annual Symposium, Nottingham University Press, Nottingham, England, pp. 167–174. Search in Google Scholar

Newman K.E., Newman M.C. (2001). Evaluation of mannan oligosaccharide on the microflora and immunoglobulin status of sows and piglet performance. J. Anim. Sci., 79: 189. Search in Google Scholar

Nguyen D.H., Nyachoti C.M., Kim I.H. (2019). Evaluation of effect of probiotics mixture supplementation on growth performance, nutrient digestibility, faecal bacterial enumeration, and noxious gas emission in weaning pigs. Ital. J. Anim. Sci., 18: 466–473. Search in Google Scholar

Nisbet D. (2002). Defined competitive exclusion cultures in the prevention of enteropathogen colonisation in poultry and swine. Antonie van Leeuwenhoek, 81: 481–486. Search in Google Scholar

Niu Q., Pu G., Fan L., Gao Ch., Lan T., Liu Ch., Du T., Kim S.W., Niu P., Zhang Z., Li P., Huang R. (2022). Identification of gut microbiota affecting fiber digestibility in pigs. Curr. Issues Mol. Biol., 44: 4557–4569. Search in Google Scholar

Novik G., Savich V. (2020). Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microb. Infect., 22: 8–18. Search in Google Scholar

Oh Y.J., Jung D.S. (2015). Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT – Food Sci. Technol., 63: 437–444. Search in Google Scholar

Ołdak A., Zielińska D. (2017). Bacteriocins from lactic acid bacteria as an alternative to antibiotics. Postepy Hig. Med. Dosw., 71: 328–338. Search in Google Scholar

Ołdak A., Zielińska D., Łepecka A., Długosz E., Kołożyn-Krajewska D. (2020). Lactobacillus plantarum strains isolated from Polish regional cheeses exhibit anti-staphylococcal activity and selected probiotic properties. Probiotics Antimicrob. Proteins, 12: 1025–1038. Search in Google Scholar

Oleskin A.V., Shenderov B.A. (2019). Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics Antimicrob. Proteins, 11: 1071–1085. Search in Google Scholar

Pan L., Zhao P.F., Ma X.K., Shang Q.H., Xu Y.T., Long S.F., Wu Y., Yuan F.M., Piao X.S. (2017). Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J. Anim. Sci., 95: 2627–2639. Search in Google Scholar

Pelizon A.C., Kaneno R., Soares A.M.V.C., Meira D.A., Sartori A. (2005). Immunomodulatory activities associated with β-glucan derived from Saccharomyces cerevisiae. Physiol. Res., 54: 557–564. Search in Google Scholar

Pelton R. (2020). Postbiotic metabolites: How probiotics regulate health. Integr. Med., 19: 25–30. Search in Google Scholar

Pérez-Alvarado O., Zepeda-Hernández A., Garcia-Amezquita L.E., Requena T., Vinderola G., García-Cayuela T. (2022). Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits. Microbiology, 13: 969460. Search in Google Scholar

Pickard J.M., Zeng M.Y., Caruso R., Núñez G. (2017). Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 279: 70–89. Search in Google Scholar

Pluske J.R. (2013). Feed and feed additives related aspects of gut health and development in weanling pigs. J. Animal Sci. Biotechnol., 4: 1. Search in Google Scholar

Puccetti M., Xiroudaki S., Ricci M., Giovagnoli S. (2020). Postbiotic-enabled targeting of the host-microbiota-pathogen interface: Hints of antibiotic decline? Pharmaceutics, 12: 624. Search in Google Scholar

Pujari R., Banerjee G. (2021). Impact of prebiotics on immune response: From the bench to the clinic. Immunol. Cell Biol., 99: 255–273. Search in Google Scholar

Rafter J., Bennet M., Caderni G., Clune Y., Hughes R., Karlsson P.C., Klinder A., O’Riordan M., O’Sullivan G.C., Pool-Zobel B., Rechkemmer G., Roller M., Rowland I., Salvadori M., Thijs H., Van Loo J., Watzl B., Collins J.K. (2007). Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr., 85: 488–496. Search in Google Scholar

Reehana N., Imran M.Y.M., Thajuddin N., Dhanasekaran D. (2021). Chapter 10 – Synbiotics in Nutrition. In: Advances in Probiotics, Elsevier, pp. 149–161. Search in Google Scholar

Ribeiro C.M., Costa V.M., Gomes M.I., Golim M.A., Modolo J.R., Langoni H. (2011). Effects of synbiotic-based Bifidobacterium animalis in female rats experimentally infected with Toxoplasma gondii. Comp. Immunol., Microbiol. Infect. Dis., 34: 111–114. Search in Google Scholar

Riccio P., Rossano P. (2020). The human gut microbiota is neither an organ nor a commensal. FEBS Letters, 594: 3262–3271. Search in Google Scholar

Ricke S.C., Pillai S.D. (1999). Conventional and molecular methods for understanding probiotic bacteria functionality in gastrointestinal tracts. Crit. Rev. Microbiol., 25: 19–38. Search in Google Scholar

Roberfroid M.B. (2000). Prebiotics and probiotics: are they functional food? Am. J. Clin. Nutr., 71: 1682–1687. Search in Google Scholar

Roberfroid M.D. (2007). Prebiotics: the concept revisited. J. Nutr., 137: 830 – 837. Search in Google Scholar

Roselli M., Finamore A., Britti M.S., Konstantinov S.R., Smidt H., de Vos W.M., Mengheri E. (2007). The novel porcine Lactobacillus sobrius strain protects intestinal calla from enterotaxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J. Nutr., 137: 2709–2716. Search in Google Scholar

Roselli M., Pieper R., Rogel-Gaillard C., de Vreis H., Bailey M., Smidt H., Lauridsen C. (2017). Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim. Feed Sci. Tech., 233: 104–119. Search in Google Scholar

Rowland I., Gibson G., Heinken A., Scott K., Swann J., Thiele I., Tuohy K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr., 57: 1–24. Search in Google Scholar

Salminen S., Collado M.C., Endo A., Hill C., Lebeer S., Quigley E.M.M., Sanders M.E., Shamir R., Swann J.R., Szajewska H., Vinderola G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol., 18: 649–667. Search in Google Scholar

San Andres J.V., Mastromano G.A., Li Y., Tran H., Bundy J.W., Miller P.S., Burkey T.E. (2019). The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Transl. Anim. Sci., 3: 1315–1325. Search in Google Scholar

Satora M., Rząsa A., Rypuła K., Płoneczka-Janeczko K. (2021). Field evaluation of the influence of garlic extract and probiotic cultures on sows and growing pigs. Med. Weter., 77: 21–29. Search in Google Scholar

Saulnier D.M., Spinler J.K., Gibson G.R., Versalovic J. (2009). Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr. Opin. Biotechnol., 20: 135–141. Search in Google Scholar

Sazykin I., Khmelevtsova L.E., Seliverstova E., Sazykina M. (2021). Effect of antibiotics used in animal husbandry on the distribution of bacterial drug resistance (review). Appl. Biochem. Microbiol., 57: 20–30. Search in Google Scholar

Schwarz S., Kehrenberg C., Walsh T.R. (2001). Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents., 17: 431–437. Search in Google Scholar

Scott A.J., Merrifield C.A., Younes J.A., Pekelharing E.P. (2018). Pre-, pro- and synbiotics in cancer prevention and treatment – A review of basic and clinical research. eCancer, 12: 869–880. Search in Google Scholar

Sella S.R.B.R., Bueno T., Angelo A.B., de Oliveira A.A.B., Karp S.G., Soccol C.R. (2021). Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit. Rev. Biotechnol., 41: 355–369. Search in Google Scholar

Shehata A.A., Yalçın S., Latorre J.D., Basiouni S., Attia Y.A., Abd El-Wahab A., Visscher C., El-Seedi H.R., Huber C., Hafez H.M. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms, 10: 395. Search in Google Scholar

Shigwedha N., Hiwilepo-Van Hal P., Jia L., Sichel L. Zhang S. (2016). Chapter 3-Prebiotics: metabolism and symbiotic synergy with probiotics in promoting health. In: Probiotics in human nutrition and health, Rao V. and Rao L.G. (eds). InTech, London, UK. Shimizu H., Masujima Y., Ushiroda Ch., Mizushima R., Taira S., Search in Google Scholar

Ohue-Kitano R., Kimura I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep., 9: 16574. Search in Google Scholar

Siciliano R.A., Reale A., Mazzeo M.F., Morandi S., Silvetti T., Brasca M. (2021). Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients, 13: 1225. Search in Google Scholar

Singh B., Maharjan S., Cho K.H., Cui L.H., Park I.K., Choi Y.J., Cho C.S. (2018). Chitosan-based particulate systems for the delivery of mucosal vaccines against infectious diseases. Int. J. Biol. Macromol., 110: 54–64. Search in Google Scholar

Siwek M., Sławińska A., Stadnicka K., Bogucka J., Dunisławska A., Bednarczyk M. (2018). Prebiotics and synbiotics – in ovo delivery for improved lifespan condition in chicken. Vet. Res., 14: 402. Search in Google Scholar

Stier H., Bischoff S. (2017). Saccharomyces boulardii CNCM I-745 influences the gut-associated immune system. MMW – Fortschr. Med., 159: 1–6. Search in Google Scholar

Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., Kubo Ch., Koga Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 558: 263–275. Search in Google Scholar

Suo Ch., Yin Y., Wang X., Lou X., Song D., Wang X., Gu Q. (2012). Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet. Res., 8: 89. Search in Google Scholar

Swanson K.S, Gibson G.R., Hutkins R., Reimer R.A., Reid G., Verbeke K., Scott K.P., Holscher H.D., Azad M.B., Delzenne N.M., Sanders M.E. (2020). The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol., 17: 687–701. Search in Google Scholar

Szuba-Trznadel A., Rząsa A., Lira R., Fuchs B. (2014). The influence of (1,3)-(1,6)-ß-D-glucan on the production results of sows and their offspring. J. Anim. Feed Sci., 23: 228–235. Search in Google Scholar

Szymańska-Czerwińska M., Bednarek D. (2008). Effect of prebiotics on immunological processes in animals (in Polish). Med. Weter., 64: 262–264. Search in Google Scholar

Tarsillo B., Priefer R. (2020). Proteobiotics as a new antimicrobial therapy. Microb. Pathog., 142: 2580. Search in Google Scholar

Teng P.Y., Kim W.K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Vet. Sci., 5: 245. Search in Google Scholar

Tomasik P., Tomasik P. (2020). Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci., 10: 1470. Search in Google Scholar

Tugnoli B., Giovagnoni G., Piva A., Grilli E. (2020). From acidifiers to intestinal health enhancers: How organic acids can improve growth eciency of pigs. Animals, 10: 134. Search in Google Scholar

Vallianou N., Stratigou T., Christodoulatos G.S., Tsigalou Ch., Dalamaga M. (2020). Probiotics, prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives. Curr. Obes. Rep., 9: 179–192. Search in Google Scholar

Verso L.L., Talbot G., Morissette B., Guay F., Matte J., Farmer Ch., Gong J., Wang Q., Bissonnette N., Beaulieu C., Lessard M. (2020). The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. J. Anim. Sci., 98: 1–16. Search in Google Scholar

Villagrán-de la Mora Z., Nuño K., Vázquez-Paulino O., Avalos H., Castro-Rosas J., Gómez-Aldapa C., Angulo C., Ascencio F., Villarruel-López A. (2019). Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals, 9: 777. Search in Google Scholar

Wang H., Ha B.D., Kim I.H. (2021 a). Effects of probiotics complex supplementation in low nutrient density diet on growth performance, nutrient digestibility, faecal microbial, and faecal noxious gas emission in growing pigs. Ital. J. Anim. Sci., 20: 163–170. Search in Google Scholar

Wang K., Hu C., Tang W., Azad M.A.K., Zhu Q., He Q., Kong X. (2021 b). The enhancement of intestinal immunity in offspring piglets by maternal probiotic or synbiotic supplementation is associated with the alteration of gut microbiota. Nutrition, 8: 686053. Search in Google Scholar

Wang S., Xiao Y., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. (2020). Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J. Funct. Foods, 66: 103838. Search in Google Scholar

Wang Y., Gong L., Wu Y.P., Cui Z.W., Wang Y.Q., Huang Y., Zhang X.P., Li W.F. (2019). Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J. Zhejiang Univ. Sci. B., 20: 180–192. Search in Google Scholar

Wang Z., Wang L., Chen Z., Ma X., Yang X., Zhang J., Jiang Z. (2016). In vitro evaluation of swine-derived Lactobacillus reuteri: Pro-biotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J. Micro-biol. Biotechnol., 26: 1018–1025. Search in Google Scholar

Westerik N., Reid G., Sybesma W., Kort R. (2018). The probiotic Lactobacillus rhamnosus for alleviation of Helicobacter pylori-associated gastric pathology in East Africa. Front Microbiol., 9: 1873. Whisner C.M., Castillo L.F. (2018). Prebiotics, bone and mineral metabolism. Calcif. Tissue Int., 102: 443–479. Search in Google Scholar

Yadav R., Puniya A.K., Shukla P. (2016). Probiotic properties of Lactobacillus plantarum RYPR1 from an indigenous fermented beverage raabadi. Front Microbiol., 7: 1683. Search in Google Scholar

Yadav S., Jha R. (2019). Strategies to modulate the intestinal micro-biota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol., 10: 2–13. Search in Google Scholar

Yan F., Polk D.B. (2020). Probiotics and probiotic-derived functional factors-mechanistic insights into applications for intestinal homeostasis. Front. Immunol., 11: 1428. Search in Google Scholar

Yang Y., Park J.H., Kim I.H. (2020). Effect of probiotic containing Lactobacillus plantarum on growth performance, nutrient digestibility, and fecal microbiota in weaning pigs. Can. J. Anim. Sci., 100: 205–209. Search in Google Scholar

Yoo J.Y., Kim S.S. (2016). Probiotics and prebiotics: Present status and future perspectives on metabolic disorders. Nutrients, 8: 173. Search in Google Scholar

Yousaf S., Nouman H.M., Ahmed I., Husain S., Waseem M., Nadeem S., Tariq M., Sizmaz O., Chudhry M.F.Z. (2022). A review of probiotic applications in poultry: improving immunity and having beneficial effects on production and health. Post. Mikrobiol. – Adv. Microbiol., 61: 115–123. Search in Google Scholar

Zhao P.Y., Kim I.H. (2015). Effect of direct-fed microbial on growth performance, nutrient digestibility, faecal noxious gas emission, faecal microbial flora and diarrhoea score in weaning pigs. Anim. Feed Sci. Technol., 200: 86–92. Search in Google Scholar

Zheng D., Liwinski T, Elinav E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res., 30: 492–506. Search in Google Scholar

Zheng L., Duarte M.E., Sevarolli Loftus A., Kim S.W. (2021). Intestinal health of pigs upon weaning: challenges and nutritional intervention. Vet. Sci., 8: 628258. Search in Google Scholar

Ziemer C.J., Gibson G.R. (1998). An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. Int. Dairy J., 8: 473–479. Search in Google Scholar

Żary-Sikorska E., Juśkiewicz J. (2007). The effect exerted by fructans with a different polymerization degree of carbohydrate chain on fermentative processes in the end segment of the alimentary tract in experimental rats (in Polish). Żywn. Nauka Technol. Jakość, 54: 385–391. Search in Google Scholar

Żółkiewicz J., Marzec A., Ruszczyński M., Feleszko W. (2020). Postbiotics – a step beyond pre- and probiotics. Nutrients, 12: 2189. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine