Acceso abierto

Comparison of the effects of probiotic-based formulations on growth, feed utilization, blood constituents, cecal fermentation, and duodenal morphology of rabbits reared under hot environmental conditions


Cite

Abd El-Aziz A.H., Mahrose K.M., El-Kasrawy N.I., Alsenosy A.E.A. (2021). Yeast as growth promoter in two breeds of growing rabbits with special reference to its economic implications. An. Acad. Bras. Cienc., 93: e20190274. Search in Google Scholar

Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Qattan S.Y.A., Batiha G.E., Khafaga A.F., Abdel-Moneim A.-M.E., Alagawany M. (2020). Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr., 104: 18351850. Search in Google Scholar

Abdel-Monem U., Mahrose K., Khalil B. (2009). Effects of cage density and climatic conditions on the performance of growing rabbits. Zag. Vet. J., 37: 198–208. Search in Google Scholar

Al-Sagheer A.A., Abdel Monem U.M., Sayed-Ahmed E.E., Khalil B.A. (2021). Navel orange peel hydroethanolic extract as a phytogenic feed supplement: impacts on growth, feed intake, nutrient digestibility, and serum metabolites of heat stressed growing rabbits. Anim. Biotechnol., 112. Search in Google Scholar

AOAC (2006). Official Methods of Analysis of AOAC International.18th edition. AOAC International, Arlington, VA, USA. Search in Google Scholar

Awad W.A., Ghareeb K., Abdel-Raheem S., Böhm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Sci., 88: 4956. Search in Google Scholar

Ayyat M.S., Al-Sagheer A.A., El-Latif A., Khaled M., Khalil B.A. (2018). Organic selenium, probiotics, and prebiotics effects on growth, blood biochemistry, and carcass traits of growing rabbits during summer and winter seasons. Biol. Trace Elem. Res., 186: 162–173. Search in Google Scholar

Ayyat M., Abd El-Latif K., Helal A., Al-Sagheer A. (2021 a). New Zealand White rabbits tolerance to chronic thermal stress at different dietary energy/protein levels. Anim. Feed Sci. Technol., 278: 114992. Search in Google Scholar

Ayyat M.S., El-Latif A., Khaled M., Helal A.A., Al-Sagheer A.A. (2021 b). Interaction of supplementary L-carnitine and dietary energy levels on feed utilization and blood constituents in New Zealand White rabbits reared under summer conditions. Trop. Anim. Health Prod., 53: 279. Search in Google Scholar

Badr A. (2015). Effect of feeding time and vitamin C levels on performance of rabbit does during the mild and hot seasons in Egypt. Nat. Sci., 13: 25–29. Search in Google Scholar

Bancroft J.D., Layton C., Suvarna S.K. (2012). Bancroft’s theory and practice of histological techniques. Elsevier, Churchill Livingstone, 7th ed., 6993 pp. Search in Google Scholar

Bassiony S.S., Al-Sagheer A.A., El-Kholy M.S., Elwakeel E.A., Helal A.A., Alagawany M. (2021). Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. Ital. J. Anim. Sci., 20: 12321243. Search in Google Scholar

Belhassen T., Bonai A., Gerencsér Z.S., Matics Z.S., Tuboly T., Bergaoui R., Kovacs M. (2016). Effect of diet supplementation with live yeast Saccharomyces cerevisiae on growth performance, caecal ecosystem and health of growing rabbits . World Rabbit Sci., 24: 191–200. Search in Google Scholar

Cao G., Tao F., Hu Y., Li Z., Zhang Y., Deng B., Zhan X. (2019). Positive effects of a Clostridium butyricum-based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food Funct., 10: 29262934. Search in Google Scholar

Chen L., Li S., Zheng J., Li W., Jiang X., Zhao X., Li J., Che L., Lin Y., Xu S., Feng B., Fang Z., De W. (2018). Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. Biotechnol., 9: 62. Search in Google Scholar

Daader A., Al Sagheer A., Gabr H., Abd El Moniem E. (2018). Alleviation of heat-stress-related physiological perturbations in growing rabbits using natural antioxidants. Span. J. Agric. Res., 16: e0610. Search in Google Scholar

De Blas C., Mateos G.G. (2020). Feed formulation. In: Nutrition of the rabbit, De Blas C., Wiseman J. (eds). CABI, Oxfordshire, London, UK, pp. 243–253. Search in Google Scholar

El-Badawi A.Y., Helal F.I.S., Yacout M.H.M., Hassan A.A., El-Naggar S., Elsabaawy E.H. (2017). Growth performance of male NZW rabbits fed diets supplemented with beneficial bacteria or live yeast. Agric. Eng. Int.: CIGR J., pp. 220–226. Search in Google Scholar

El-Shafei A., Younis T., Al-Gamal M., Hesham A. (2019). Impact of probiotic (Lactobacillus planterium) supplementation on productive and physiological performance of growing rabbits under Egyptian conditions. Egypt. J. Rabbit Sci., 29: 125–148. Search in Google Scholar

Ferraz P., Ferraz G., Barbari M., Majg S., Damasceno F., Cecchin D., Castro J. (2019). Behavioural and physiological responses of rabbits. Agron. Res., 17: 704710. Search in Google Scholar

Fortun-Lamothe L., Boullier S. (2007). A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livest. Sci., 107: 118. Search in Google Scholar

Galeano J., Herrera A., Suescun J. (2016). The probiotic Enterococcus faecium modifies the intestinal morphometric parameters in weaning piglets. Rev. Fac. Nac. Agron. Medellin, 69: 7803–7811. Search in Google Scholar

Han J., Wang Y., Song D., Lu Z., Dong Z., Miao H., Wang W., He J., Li A. (2018). Effects of Clostridium butyricum and Lactobacillus plantarum on growth performance, immune function and volatile fatty acid level of caecal digesta in broilers. Food Agric. Immunol., 29: 797807. Search in Google Scholar

Haque A., Rahman M., Bora J. (2016). Effect of breed, weaning age and feeding regime on chemical composition of rabbit meat. Int. J. Vet. Sci. Anim. Husb., 1: 12–13. Search in Google Scholar

Jain N.C. (1986). Schalm’s veterinary hematology. Lea and Febiger, Philadelphia, USA. Search in Google Scholar

Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., Weir T.L., Ehrentraut S.F., Pickel C., Kuhn K.A., Lanis J.M., Nguyen V., Taylor C.T., Colgan S.P. (2015). Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function. Cell Host Microbe, 17: 662671. Search in Google Scholar

Kreuzer-Redmer S., Bekurtz J.C., Arends D., Bortfeldt R., Kutz-Lohroff B., Sharbati S., Einspanier R., Brockmann G.A. (2016). Feeding of Enterococcus faecium NCIMB 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes. Appl. Environ. Microbiol., 82: 22632269. Search in Google Scholar

Lambert J.M., Bongers R.S., de Vos W.M., Kleerebezem M. (2008). Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol., 74: 47194726. Search in Google Scholar

Liong M.T., Shah N.P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci., 88: 5566. Search in Google Scholar

Liong M.T., Shah N.P. (2006). Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal microflora, and organic acids in rats. J. Dairy Sci., 89: 13901399. Search in Google Scholar

Liu L., Zeng D., Yang M., Wen B., Lai J., Zhou Y., Sun H., Xiong L., Wang J., Lin Y., Pan K., Jing B., Wang P., Ni X. (2019). Probiotic Clostridium butyricum improves the growth performance, immune function, and gut microbiota of weaning rex rabbits. Probiotics Antimicrob. Proteins, 11: 12781292. Search in Google Scholar

Lye H.S., Rusul G., Liong M.T. (2010). Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J. Dairy Sci., 93: 13831392. Search in Google Scholar

Mancini S., Paci G. (2021). Probiotics in rabbit farming: Growth performance, health status, and meat quality. Animals, 11: 3388. Search in Google Scholar

Marai I.F.M., Ayyat M.S., El-Monem A. (2001). Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions. Trop. Anim. Health Prod., 33: 451–462. Search in Google Scholar

Nakanishi S., Kataoka K., Kuwahara T., Ohnishi Y. (2003). Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethaneinduced aberrant crypt foci in the rat colon. Microbiol. Immunol., 47: 951958. Search in Google Scholar

Oladimeji A.M., Johnson T.G., Metwally K., Farghly M., Mahrose K.M. (2022). Environmental heat stress in rabbits: implications and ameliorations. Int. J. Biometeorol., 66: 111. Search in Google Scholar

Palmquist D., Conrad H. (1971). Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. J. Dairy Sci., 54: 10251033. Search in Google Scholar

Parker A., Maclaren O.J., Fletcher A.G., Muraro D., Kreuzaler P.A., Byrne H.M., Maini P.K., Watson A.J., Pin C. (2017). Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. FASEB J., 31: 636649. Search in Google Scholar

Pereira D.I., Gibson G.R. (2002). Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol., 68: 46894693. Search in Google Scholar

Pogány Simonová M., Lauková A., Žitnˇnan R., Chrastinová L. (2015). Effect of rabbit origin enterocin-producing strain Enterococcus faecium CCM7420 application on growth performance and gut morphometry in rabbits. Czech J. Anim. Sci., 60: 509–512. Search in Google Scholar

Pogány Simonová M., Chrastinová Ľ., Lauková A. (2020 a). Autochtonous strain Enterococcus faecium EF2019(CCM7420), its bacteriocin and their beneficial effects in broiler rabbits – a review. Animals, 10: 1188. Search in Google Scholar

Pogány Simonová M., Lauková A., Chrastinová Ľ., Plachá I., Szabóová R., Kandričáková A., Žitňan R., Chrenková M., Ondruška Ľ., Bónai A., Maticszs ZS., Kovács M., Strompfová V. (2020 b). Beneficial effects of Enterococcus faecium EF9a administration in rabbit diet. World Rabbit Sci., 28: 169. Search in Google Scholar

Salim H.M., Kang H.K., Akter N., Kim D.W., Kim J.H., Kim M.J., Na J.C., Jong H.B., Choi H.C., Suh O.S., Kim W.K. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Sci., 92: 20842090. Search in Google Scholar

Samli H.E., Senkoylu N., Koc F., Kanter M., Agma A. (2007). Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch. Anim. Nutr., 61: 4249. Search in Google Scholar

Shamoto K., Yamauchi K. (2000). Recovery responses of chick intestinal villus morphology to different refeeding procedures. Poultry Sci., 79: 718723. Search in Google Scholar

Wang K., Cao G., Zhang H., Li Q., Yang C. (2019). Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Funct., 10: 78447854. Search in Google Scholar

Wu Y., Zhen W., Geng Y., Wang Z., Guo Y. (2019). Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poultry Sci., 98: 150163. Search in Google Scholar

Xu Z.R., Hu C.H., Xia M.S., Zhan X.A., Wang M.Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Sci., 82: 10301036. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine