Acceso abierto

Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review


Cite

Aiello D., Patel K., Lasagna E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Gen. 49: 505-519. doi: 10.1111/age.1269610.1111/age.12696Search in Google Scholar

Allais S., Journaux L., Levéziel H., Payet-Duprat N., Raynaud P., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Renand G. (2011). Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 89: 1-11.10.2527/jas.2010-3063Search in Google Scholar

Allais S., Levéziel H., Payet-Duprat N., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Journaux L., Bonnot A., Renand G. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breads. J. Anim. Sci. 88: 446-454.10.2527/jas.2009-2385Search in Google Scholar

Arrington D.D., Van Vleet T.R., Schnellmann R,G. (2006). Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol-Cell Ph 291: C1159-C1171.10.1152/ajpcell.00207.2006Search in Google Scholar

Bellinge R.H.S., Liberles D.A., Iaschi S.P.A., O’Brien P.A., Tay G.K. (2005). Myostatin and its implications on animal breeding: a review. Anim. Gen. 36: 1-6.10.1111/j.1365-2052.2004.01229.xSearch in Google Scholar

Bennett G.L., Tait, Jr. R.G., Shackelford S.D., Wheeler T.L., King D.A., Casas E., Smith T.P.L. (2019). Enhanced estimates of carcass and meat quality effects for polymorphisms in myostatin and μ-calpain genes. J. Anim. Sci. 97: 569-577. doi: 10.1093/jas/sky45110.1093/jas/sky451Search in Google Scholar

Boehm M.L., Kendall T.L., Thompson V.F., Goll D.E. (1998). Changes in the calpains and calpastatin during post mortem storage of bovine muscle. J. Anim. Sci.76: 2415-2434.10.2527/1998.7692415xSearch in Google Scholar

Bongiorni S., Valentini A., Chillemi G. (2016). Structural and dynamic characterization of the C313Y mutation in myostatin dimeric protein, responsible for the “double muscle” phenotype in Piedmontese cattle. Front. Genet.7:14. doi:10.3389/fgene.2016.0001410.3389/fgene.2016.00014Search in Google Scholar

Bouyer C., Forestier L., Renand G., Oulmouden A. (2014). Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE 9(5): e97399. doi:10.1371/journal.pone.009739910.1371/journal.pone.0097399Search in Google Scholar

Branciari R., Ceccobelli S., Di Lorenzo P., Ranucci D., Miraglia D., Codini M., Ceccarini M. R., Lasagna E. 2014. Characterization of muscle fibers in normal and hypertrophied Marchigiana beef cattle. J. Biotechnol. 185: S42.10.1016/j.jbiotec.2014.07.140Search in Google Scholar

Brooks J.C., Savell J. (2004). Perimysium thickness as an indicator of beef tenderness. Meat Sci. 67: 329-334.10.1016/j.meatsci.2003.10.019Search in Google Scholar

Calvo J.H., Iguácel L.P., Kirinus J.K., Serrano M., Ripoll G., Casasús I., Joy M., Pérez-Velasco L., Sarto P., Albertí P., Blanco M. (2014). A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci., 96, 2, Part A: 775-782.10.1016/j.meatsci.2013.10.003Search in Google Scholar

Casas E., Keele J.W., Fahrenkrug S.C., Smith T.P., Cundiff L.V., Stone R.T. (1999). Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77: 1686-1692.10.2527/1999.7771686xSearch in Google Scholar

Chang L.Y., Pitchford W.S., Bottema C.D. K. (2014). Modeling tenderness for genetic and quantitative trait loci analyses. J. Anim. Sci. 92: 39-47.10.2527/jas.2013-6696Search in Google Scholar

Chávez A., Pérez E.Rubio M.S., Méndez R.D., Delgado E.J., Díaz D. (2012). Chemical composition and cooking properties of beef forequarter muscles of Mexican cattle from different genotypes Meat Sci. 91, 2: 160-164.10.1016/j.meatsci.2012.01.010Search in Google Scholar

Cheong H.S., Yoon D.H., Park B.L., Kim L.H., Bae J.S., Namgoong S., Lee H.W., Han Ch.S., Kim J.O., Cheong I.Ch., Shin H.D. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Gen. 9: 33.10.1186/1471-2156-9-33Search in Google Scholar

Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate micro RNA target site in the myostatin gene affects muscularity in sheep. Nat. Gen. 38 (7): 813-818.10.1038/ng1810Search in Google Scholar

Corva P., Soria L., Schor A., Villarreal E., Pérez Cenci M., Motter M., Mezzadra C., Melucci L., Miguel C., Paván E., Depetris G., Santini F., Grigera Naón J. (2007). Association of CAPN1 And CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Gen. Mol. Biol. 30 (4): 1064-1069.10.1590/S1415-47572007000600006Search in Google Scholar

Crisà A., Marchitelli C., Savarese M.C., Valentini A. (2003). Sequence analysis of myostatin promoter in cattle. Cytogenet. Genome Res. 102: 48-52.10.1159/000075724Search in Google Scholar

Curi R.A., Chardulo L.A.L., Mason M.C., Arrigoni M.D.B., Silveira A.C., de Oliveira H.N. (2009). Effect of single nucleotide polymorphisms of CAPN1 nd CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Gen. 40: 456-462.10.1111/j.1365-2052.2009.01859.xSearch in Google Scholar

Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L., Falaschini A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J. Biomed Biotechnol. ID 542945, doi: 10.1155/2010/542945.10.1155/2010/542945Search in Google Scholar

Dunner S., Sevane N., García D., Cortés O., Valentini A., Williams J.L., Mangin B., Cañón J., Levéziel H., the GeMQual Consortium (2013). Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154: 34–44. doi:10.1016/j.livsci.2013.02.02010.1016/j.livsci.2013.02.020Search in Google Scholar

Ekerljung M. (2012). Candidate gene effect on beef quality. Licentiate thesis. Swedish University of Agricultural Sciences Upsala.Search in Google Scholar

Esmailizadeh A.K., Bottema C.D., Sellick G.S., Verbyla A.P., Morris C. A., Cullen N.G., Pitchford W.S. (2008). Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 86: 1038-1046.10.2527/jas.2007-0589Search in Google Scholar

Gao Y., Zhang R., Hu X., Li N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77: 36-45.10.1016/j.meatsci.2007.03.026Search in Google Scholar

Geesink G.H., Kuchay S., Chishti A.H., Koohmaraie M. (2006). l-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 84: 2834-2840.10.2527/jas.2006-122Search in Google Scholar

Goll D.E., Thompson V.F., Li H.Q., Wei W., Cong J.Y. (2003). The calpain system. Physiol. Rev. 83: 731-801.10.1152/physrev.00029.2002Search in Google Scholar

Grobet L., Poncelet D., Royo L.J., Brouwers B., Pirottin D., Michaux C., Menissier F., Zanotti M., Dunner S., Georges M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 9: 210-213.10.1007/s003359900727Search in Google Scholar

Harris S.E., Huff-Lonergan E., Lonergan S.M., Jones W.R., Rankins D. (2001). Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. J. Anim. Sci. 79: 666-667.10.2527/2001.793666xSearch in Google Scholar

Hickford J.G., Forrest R.H., Zhou H., Fang Q., Han J., Frampton C.M., Horrell A.L. (2009). Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Gen. 41 (1): 64-72.10.1111/j.1365-2052.2009.01965.xSearch in Google Scholar

Hill E. W., Gu J., Eivers S.S., Fonseca R.G., McGivney B.A., Govindarajan P., Orr N., Katz L.M., MacHugh D.E. (2010). A sequence polymorphism in MSTN predict sprinting ability and racing stamina in thoroughbred horses. PLOS One 5 (1): e8645.10.1371/journal.pone.0008645Search in Google Scholar

Hirwa C.A., Wallace P., Shen X., Nie Q., Yang G., Zhang X. (2011). Genes related to economically important traits in beef cattle. Asian J. Anim. Sci. 5: 34-45.10.3923/ajas.2011.34.45Search in Google Scholar

Hou G., Huang M., Gao X., Li J., Gao H., Ren H., Xu S. (2011a). Associations of calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr. J. Biotechnol. 10 (63): 13714-13718.10.5897/AJB11.338Search in Google Scholar

Hou G.Y., Yuan Z.R., Zhou H.L., et al. (2011b). Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol. Biol. Rep., 38: 4705-4708.10.1007/s11033-010-0605-1Search in Google Scholar

Iso-Touru T., Pesonen M., Fischer D., Huuskonen A., Sironen A. (2018). The effect of CAPN1 and CAST gene variations on meat quality traits in Finnish Aberdeen Angus and Nordic Red Cattle populations. Agr. Food. Sci. 27: 227-231.10.23986/afsci.75125Search in Google Scholar

Jeanplong F., Sharma M., Somers W.G., Bass J.J., Kambadur R. (2001). Genomic organization and neonatal expression of the bovine myostatin gene. Mol. Cell. Biochem. 220: 31-37.10.1023/A:1010801511963Search in Google Scholar

Joulia-Ekaza D., Cabello G. (2006). Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp. Cell Res. 312: 2401-2414.10.1016/j.yexcr.2006.04.012Search in Google Scholar

Juszczuk-Kubiak E., Rosochacki S. J., Wicińska K., Szreder T., Sakowski T. (2004a). A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim. Sci. Pap. Rep. 22 (2): 195-204.Search in Google Scholar

Juszczuk-Kubiak E., Sakowski T., Flisikowski K., Wicińska K., Oprządek J., Rosochacki S. J. (2004b). Bovine μ-calpain (CAPN1) gene: new SNP within intron 14. J. App. Gen. 45 (4): 457-460.Search in Google Scholar

Kambadur R., Sharma M., Smith T.P.L., Bass J.J. (1997). Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle. Genome Res. 7: 910-915.10.1101/gr.7.9.910Search in Google Scholar

Kaplanová K., Dufek A., Dračková E., Simeonovová J., Šubrt J., Vrtková I., Dvořák J. 2013. The association of CAPN1, CAST, SCD and FASN polymorphisms with quality traits in commercial crossbread cattle in the Czech Republic. Czech J. Anim. Sci. 58 (11): 489-496.10.17221/7044-CJASSearch in Google Scholar

Keane M.G., Dunne P.G., Kenny D.A., Berry D.P. (2011). Effect of genetic merit for carcass weight, breed type and slaughter weight on performance and carcass traits of beef x diary steers. Animal 5 (2): 182-194.10.1017/S1751731110001758Search in Google Scholar

Kołczak T., Pałka K., Pośpiech E. (2003). Changes in collagen solubility of raw and roasted bovine psoas major and minor and semitendinosus muscles during cold storage. Pol. J. Food Nutr. Sci. 12/53: 57-61.Search in Google Scholar

Koohmaraie M., Geesink G.H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 74: 34-43.10.1016/j.meatsci.2006.04.025Search in Google Scholar

Lawrence T.E., Dikeman M.E., Hunt M.C., Kastner C.L., Johnson D.E. (2003a). Staged injection marination with calcium lactate, phosphate and salt may improve beef water-binding ability and palatability traits. Meat Sci. 65 (3): 967-972.10.1016/S0309-1740(02)00312-1Search in Google Scholar

Lawrence T.E., Dikeman M.E., Stephens J.W., Obuz E., Davis J.R. (2003b). In situ investigation of the calcium-induced proteolytic and saltingin mechanisms causing tenderization in calcium-enhanced muscle. Meat Sci. 66: 69-75.10.1016/S0309-1740(03)00016-0Search in Google Scholar

Li J., Zhang L.P., Gan Q.F., Li J.Y., Gao H.J., Yuan Z.R., Gao X., Chen J.B., Xu S.Z. (2010). Association of CAST gene polymorphisms with carcass and meat quality traits in Chinese commercial cattle herds. Asian-Australas. J. Anim. Sci. 23 (11): 1405-1411.10.5713/ajas.2010.90602Search in Google Scholar

Li X., Ekerljung M., Lundström K., Lundén A. (2013). Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 94 (2): 153-158.10.1016/j.meatsci.2013.01.010Search in Google Scholar

Lian T., Wang L., Liu Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Australas. J. Anim. Sci. 26 (3): 443-454. doi: https://doi.org/10.5713/ajas.2012.1236510.5713/ajas.2012.12365409347125049808Search in Google Scholar

Liu X., Usman T., Wang Y., Wang Z., Xu X., Wu M., Zhang Y., Zhang X., Li1 Q., Liu L., Shi W., Qin C., Geng F., Wang C., Tan R., Huang X., Liu A., Wu1 H., Tan S., Yu Y. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas. J. Anim. Sci. 28 (4): 467-475.10.5713/ajas.13.0837434109525656186Search in Google Scholar

Lozano M.S.R., Alfaro-Zavala S., Sifuentes-Rincón A.M., Parra-Bracamonte G.M., Varela D.B., Méndez Medina R.D., Linares C.P., Rincón F.R., Escalante A.S., Torrescano Urrutia G., Figueroa Saavedra F. (2016). Meat tenderness genetic and genomic variation sources in commercial beef cattle. J. Food Qual. 39: 150-156.10.1111/jfq.12185Search in Google Scholar

Mach N., Bach A., Velarde A., Devant M. (2008). Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 78: 232-238.10.1016/j.meatsci.2007.06.021Search in Google Scholar

Maddock K.R., Huff-Lonergan E., Rowe L.J., Lonergan S.M. (2005). Effect of pH and ionic strength on μ- and m-calpain inhibition by calpastatin. J. Anim. Sci. 83: 1370-1376.10.2527/2005.8361370xSearch in Google Scholar

Magolski J.D., Buchanan D.S., Maddock-Carlin K.R., Anderson V.L., Newman D.J., Berg E.P. (2013). Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness. Meat Sci. 95: 480-485.10.1016/j.meatsci.2013.05.024Search in Google Scholar

McPherron A.C., Lee S.J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences USA 94: 12457-12461.10.1073/pnas.94.23.12457Search in Google Scholar

Melody J.L., Lonergan S.M., Rowe L.J., Huiatt T.W., Mayes M.S., Huff-Lonergan E. (2004). Early post mortem biochemical factors influence tenderness and water – holding capacity of three porcine muscles. J. Anim. Sci. 82: 1195-1205.10.2527/2004.8241195xSearch in Google Scholar

Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin – deficient mice are small, brittle and hypocellular. Proceedings of the National Academy of Sciences of the United States of America 105: 388-393.10.1073/pnas.0707069105Search in Google Scholar

Morris C.A., Cullen N.G., Hickey S.M., Dobbie P.M., Veenvliet B.A., Manley T.R., Pitchford W.S., Kruk Z.A., Bottema C.D.K., Wilson T. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford – cross cattle. Anim. Gen. 37: 411-414.10.1111/j.1365-2052.2006.01483.xSearch in Google Scholar

Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Ostrander E.A., (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLOS Genetics 3 (5): e79.10.1371/journal.pgen.0030079Search in Google Scholar

Oldham J.M., Martyn J. A.K., Sharma M., Jeanplong F., Kambadur R., Bass J.J. (2001). Molecular expresion of myostatin and MyoD is greater in double – muscled than normal – muscled cattle fetuses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: 1488-1493.10.1152/ajpregu.2001.280.5.R1488Search in Google Scholar

Page B.T., Casas E., Heaton M.P., Cullent N.G., Hyndman D.L., Morris C.A., Crawford A.M., Wheeler T.L., Koohmaraie M., Keele J.W., Smith T.P.L. (2002). Evaluation of single-nucleotide polymorphism in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085.10.2527/2002.80123077xSearch in Google Scholar

Pintos D., Corva P.M. (2011). Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Anim. Gen. 42: 329-332. doi:10.1111/j.1365-2052.2010.02160.x10.1111/j.1365-2052.2010.02160.x21554351Search in Google Scholar

Purslow P.P. (2005). Intramuscular connective tissue and its role in meat quality. Meat Sci. 70 (3): 435-447.10.1016/j.meatsci.2004.06.028Search in Google Scholar

Reardon W., Mullen A.M., Sweeney T., Hamill R.M. (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine m. longissimus and m. semimembranosus. Meat Sci. 86: 270-275.10.1016/j.meatsci.2010.04.013Search in Google Scholar

Resurreccion A.V.A. (2004). Sensory aspects of consumer choices for meat and meat products. Meat Sci. 66: 11-20.10.1016/S0309-1740(03)00021-4Search in Google Scholar

Ribeca C, Bonfatti V, Cecchinato A, Albera A, Maretto F, Gallo L, Carnier P. (2013). Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle. Anim. Gen. 44: 193-196.10.1111/j.1365-2052.2012.02370.xSearch in Google Scholar

Ribeca C., Bonfatti V., Cecchinato A., Albera A., Gallo L., Carnier P. (2014). Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle. Meat Sci. 96: 1376-1383.10.1016/j.meatsci.2013.11.028Search in Google Scholar

Sarti F. M., Lasagna E., Ceccobelli S., Di Lorenzo P., Filipini F., Sbarra F., Giontella A. (2014). Influence of single nucleotide polimorphism in myostatin and myogenic factor 5 muscle growth – related genes on the performance trait of Marchigiana beef cattle. J. Anim. Sci. 92: 3804-3810.10.2527/jas.2014-7669Search in Google Scholar

Sellick G.S., Pitchford W.S., Morris C.A., Cullen N.G., Crawford A.M., Raadsma H.W., Bottema C.D. (2007). Effect of myostatin F94L on carcass yield in cattle. Anim. Gen. 38: 440-446.10.1111/j.1365-2052.2007.01623.xSearch in Google Scholar

Sevane N., Armstrong E., Cortés O., Wiener P., Pong Wong R. Dunner S., the Gem Qual Consortium. (2013). Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci. 94: 328-335.10.1016/j.meatsci.2013.02.014Search in Google Scholar

Shelton G.D., Engvall E. (2007). Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul. Disord. 17: 721-722.10.1016/j.nmd.2007.06.008Search in Google Scholar

Shi M., Gao X., Ren H., Yuan Z., Wu H., Li J., Zhang L., Gao H., Li J., Xu S. (2011). Association analysis of CAPN1 gene variants with carcass and meat quality traits in Chinese native cattle. Afr. J. Biotechnol. 10 (75): 17367-17371.10.5897/AJB11.2306Search in Google Scholar

Siegel P.M., Massagué J. (2003). Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer. 3: 807-821.10.1038/nrc1208Search in Google Scholar

Singh U., Deb R., Alyethodi R.R., Alex R., Kumar S., Chakraborty S., Dhama K., Sharma A. (2014). Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine 6: 49-58.10.1016/j.bgm.2014.03.001Search in Google Scholar

Spiller M. P., Kambadur R., Jeanplong F., Thomas M., Martyn J. K., Bass J. J., Sharma M. (2002). The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22 (20): 7066-7082.10.1128/MCB.22.20.7066-7082.2002Search in Google Scholar

Tait, R.G.J.R., Shackelford, S.D., Wheeler, T.L., King, D.A., Keele, J.W., Casas, E., Smith, T.P.L., Bennett, G.L. (2014). Capn1, Cast, And Dgat1 Genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 92: 5382-5393.10.2527/jas.2014-8211Search in Google Scholar

Tu P.A., Shiau J.W., Ding S.T., Lin E.C., Wu M.C., Wang P.H. (2012). The association of genetic variations in the promoter region of myostatin gene with growth traits in Duroc pigs. Anim. Biotechnol. 23: 291-298.10.1080/10495398.2012.709205Search in Google Scholar

Undarmaa B., Munkhtogtokh B., Davaakhuu L., Sergelen B., Nyamsuren B., Sodnom L. (2016). Sequencing Analysis of Myostatin Gene (MSTN) for Meat Cattle in Mongolia. JAST A 6: 429-434. doi: 10.17265/2161-6256/2016.06.00910.17265/2161-6256/2016.06.009Search in Google Scholar

Węglarz A. (2011). Effect of pre-slaughter housing of different cattle categories on beef quality. Anim. Sci. Pap. Rep. 29 (1): 43-52.Search in Google Scholar

Wiener P., Woolliams J.A., Frank-Lawale A., Ryan M., Richardson R.I., Nute G.R., Wood J.D., Homer D., Williams J.L. (2009). The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83: 127-134. www.ncbi.nlm.nih.gov/gene/?term=bos%20taurus%20capn210.1016/j.meatsci.2009.04.01020416780Search in Google Scholar

Xin J., Li-chun Z., Zhao-zhi L., Xiao-hui L., Hai-guo J., Chang-guo Y. (2011). Association of polymorphisms in the calpain I gene with meat quality traits in Yanbian yellow cattle of China. Asian-Australas. J. Anim. Sci. 24: 9-16.10.5713/ajas.2011.90407Search in Google Scholar

Zhang R.F., Chen H., Lei C.Z., Zhang C.L., Lan X.Y., Zhang Y.D., Zhang H.J., Bao B., Niu H., Wang X.Z. (2007). Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds. Asian-Australas. J. Anim. Sci. 20 (12): 1798-1804.10.5713/ajas.2007.1798Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine