Acceso abierto

Solution of the Rational Difference Equation xn+1=xn131+xn1xn3xn5xn7xn9xn11{x_{n + 1}} = {{{x_{n - 13}}} \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}}}


Cite

Introduction

Difference equations appear naturally as discrete analogs and as numerical solutions of differential and delay differential equations, having applications in biology, ecology, physics.

Recently, a high attention to studying the periodic nature of nonlinear difference equations has been attracted. For some recent results concerning the periodic nature of scalar nonlinear difference equations, among other problems, see, for example, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].

Amleh [1], studied the global stability, the boundedness character, and the periodic nature of the positive solutions of the difference equation: xn+1=α+xn1xn{x_{n + 1}} = \alpha + {{{x_{n - 1}}} \over {{x_n}}} where α ∈ [0, ∞) and where the initial conditions x−1 and x0 are arbitrary positive real numbers.

De Vault [8], studied the following problems xn+1=Axn+1xn2,n=0,1,,{x_{n + 1}} = {A \over {{x_n}}} + {1 \over {{x_{n - 2}}}},\quad n = 0,1, \ldots, and showed every positive solution of the equation where A ∈ (0, ∞).

Elsayed [15], studied the global result, boundedness, and periodicity of solutions of the difference equation xn+1=a+bxn1+cxnkdxn1+exnk,n=0,1,,{x_{n + 1}} = a + {{{bx_{n - 1}} + {cx_{n - k}}} \over {{dx_{n - 1}} + {ex_{n - k}}}},\quad n = 0,1, \ldots, where the parameters a, b, c, d and e are positive real numbers and the initial conditions xt,xt+1,...,x0 are positive real numbers where t = max{l,k}, lk.

Ibrahim [18], studied the solutions of non-linear difference equation xn+1=xnxn2xn1(a+bxnxn2),n=0,1,,{x_{n + 1}} = {{{x_n}{x_{n - 2}}} \over {{x_{n - 1}}(a + {bx_n}{x_{n - 2}})}},\quad n = 0,1, \ldots, where the initial values x0,x−1 and x−2 non-negative real numbers with bx0x−2 ≠ −a and x−1 ≠ 0. He investigated some properties for this difference equation such as the local stability and the boundedness for the solutions.

Simsek et. al. [25,26,27] and [30], studied the following problems with positive initial values xn+1=xn31+xn1,n=0,1,,xn+1=xn51+xn2,n=0,1,,xn+1=xn51+xn1xn3,n=0,1,,xn+1=xn31+xnxn1xn2,n=0,1,,\matrix{ {{x_{n + 1}} = {{{x_{n - 3}}} \over {1 + {x_{n - 1}}}},\quad n = 0,1, \ldots,} \cr {{x_{n + 1}} = {{{x_{n - 5}}} \over {1 + {x_{n - 2}}}},\quad n = 0,1, \ldots,} \cr {{x_{n + 1}} = {{{x_{n - 5}}} \over {1 + {x_{n - 1}}{x_{n - 3}}}},\quad n = 0,1, \ldots,} \cr {{x_{n + 1}} = {{{x_{n - 3}}} \over {1 + {x_n}{x_{n - 1}}{x_{n - 2}}}},\quad n = 0,1, \ldots,}} respectively.

In this work, the following non-linear difference equation is studied xn+1=xn131+xn1xn3xn5xn7xn9xn11,n=0,1,,{x_{n + 1}} = {{{x_{n - 13}}} \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}}},\quad n = 0,1, \ldots, where x−13,x−12,...,x−1,x0 ∈ (0, ∞) is investigated.

Main Result

Let x¯\bar x be the unique positive equilibrium of the equation 1, then clearly, x¯=x¯1+x¯.xxxxx¯x¯+x¯7=x¯x¯7=0x¯0,\bar x = {{\bar x} \over {1 + \bar x.\overline {xxxxx} }} \Rightarrow \bar x + {\bar x^7} = \bar x \Rightarrow {\bar x^7} = 0 \Rightarrow \bar x0, so, x¯=0\bar x = 0 can be obtained. For any k ≥ 0 and m > k, notation i=k,m¯i = \overline {k,m} means i = k,k + 1,...,m.

Theorem 1

Consider the difference equation 1. Then the following statements are true:

The sequences (x14n−13), (x14n−12),...(x14n−1), (x14n) are decreased and a1,..., a14 ≥ 0 is existed in such that: limnx14n13+k=a1+k,k=0,13¯.\lim\limits_{n \to \infty } {x_{14n - 13 + k}} = {a_{1 + k}},\quad k = \overline {0,13}.

(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,...) is a solution of 1 having period fourteen.

k=06limnx14nj+2k=0,j=0,1¯;\prod\limits_{k = 0}^6 \lim\limits_{n \to \infty } {x_{14n - j + 2k}} = 0,\quad j = \overline {0,1}; or k=06a2k+i=0,i=0,1¯.\prod\limits_{k = 0}^6 {a_{2k + i}} = 0,\quad i = \overline {0,1}.

If there exist n0 ∈ ℕ such that xn+1xn−11 for all nn0, then, limnxn=0.\lim\limits_{n \to \infty } {x_n} = 0.

The following formulas below: x14n+k+1=x13+k(1x1+kx3+kx5+kx7+kx9+kx11+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j11+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 1}} = {x_{ - 13 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+3=x11+k(1x1+kx3+kx5+kx7+kx9+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+111+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 3}} = {x_{ - 11 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+5=x9+k(1x1+kx3+kx5+kx7+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+211+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 5}} = {x_{ - 9 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+7=x7+k(1x1+kx3+kx5+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+311+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 7}} = {x_{ - 7 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+9=x5+k(1x1+kx3+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+411+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 9}} = {x_{ - 5 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+11=x3+k(1x1+kx5+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+511+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 11}} = {x_{ - 3 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+13=x1+k(1x3+kx5+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+611+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 13}} = {x_{ - 1 + k}}(1 - {{{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} { \times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 6} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}k=0,1¯k = \overline {0,1} , holds.

If x14n+1+kak+1 ≠ 0, x14n+3+kak+3 ≠ 0, x14n+5+kak+5 ≠ 0, x14n+7+kak+7 ≠ 0, x14n+9+kak+9 ≠ 0, x14n+11+kak+11 ≠ 0 then x14n+13+k → 0 as n → ∞, k=0,1¯k = \overline {0,1} .

Proof

Firstly, from 1, xn+1(1+xn1xn3xn5xn7xn9xn11)=xn13,{x_{n + 1}}(1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}) = {x_{n - 13}}, is obtained. If xn−1xn−3xn−5xn−7xn−9xn−11 ∈ (0, +∞), then 1 + xn−1xn−3xn−5xn−7xn−9xn−11 ∈ (1, +∞).

Since xn+1<xn13,{x_{n + 1}} < {x_{n - 13}},n ∈ ℕ limnx14n13+k=a1+k,fork=0,13¯\lim\limits_{n \to \infty } {x_{14n - 13 + k}} = {a_{1 + k}},\quad for\;\;k = \overline {0,13} existed formulas are obtained.

(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,...) is a solution of 1 having period fourteen.

In view of the 1, n=14nx14n+1=x14n131+k=05limnx14n11+2k,n = 14n \Rightarrow {x_{14n + 1}} = {{{x_{14n - 13}}} \over {1 + \prod_{k = 0}^5 \lim\limits_{n \to \infty } {x_{14n - 11 + 2k}}}}, is obtained. If the limits are put on both sides of the above equality, k=06limnx14n13+2k=0ork=06a2k+1=0,\prod\limits_{k = 0}^6 \lim\limits_{n \to \infty } {x_{14n - 13 + 2k}} = 0\quad or\quad \prod\limits_{k = 0}^6 {a_{2k + 1}} = 0, is obtained. Similarly for n = 14n + 1, n=14n+1x14n+2=x14n121+k=05limnx14n10+2k,n = 14n + 1 \Rightarrow {x_{14n + 2}} = {{{x_{14n - 12}}} \over {1 + \prod_{k = 0}^5 \lim\limits_{n \to \infty } {x_{14n - 10 + 2k}}}}, is obtained. If the limits are put on both sides of the above equality, k=06limnx14n12+2k=0ork=06a2k+2=0,\prod\limits_{k = 0}^6 \lim\limits_{n \to \infty } {x_{14n - 12 + 2k}} = 0\quad or\quad \prod\limits_{k = 0}^6 {a_{2k + 2}} = 0, is obtained.

If there exist n0 ∈ ℕ such that xn+1xn−11 for all nn0, then, a1a3a5a7a9a11a13a1, a2a4a6a8a10a12a14a2. Using (c) we get k=06a2k+i=0,i=1,2¯.\prod\limits_{k = 0}^6 {a_{2k + i}} = 0,\quad i = \overline {1,2}. Then we see that, limnxn=0.\lim\limits_{n \to \infty } {x_n} = 0. Hence the proof of (d) completed.

Subracting xn−13 from the left and right-hand sides in 1, xn+1xn13=11+xn1xn3xn5xn7xn9xn11(xn1xn15),{x_{n + 1}} - {x_{n - 13}} = {1 \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{n - 9}}{x_{n - 11}}}}({x_{n - 1}} - {x_{n - 15}}), is obtained and the following formula is produced below, for n ≥ 2 x2n3x2n17=(x1x13)i=1n211+x2i1x2i3x2i5x2i7x2i9x2i11,x2n2x2n16=(x1x12)i=1n211+x2ix2i2x2i4x2i6x2i8x2i10,\matrix{ {{x_{2n - 3}} - {x_{2n - 17}} = ({x_1} - {x_{ - 13}})\prod\limits_{i = 1}^{n - 2} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}},} \cr {{x_{2n - 2}} - {x_{2n - 16}} = ({x_1} - {x_{ - 12}})\prod\limits_{i = 1}^{n - 2} {1 \over {1 + {x_{2i}}{x_{2i - 2}}{x_{2i - 4}}{x_{2i - 6}}{x_{2i - 8}}{x_{2i - 10}}}},}\,\,\,\,} 7 j inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+1+kx13+k=(x1+kx13+k)j=0ni=17j11+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 1 + k}} - {x_{ - 13 + k}} = ({x_{1 + k}} - {x_{ - 13 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 1 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+3+kx11+k=(x3+kx11+k)j=0ni=17j+111+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 3 + k}} - {x_{ - 11 + k}} = ({x_{3 + k}} - {x_{ - 11 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 2 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+5+kx9+k=(x5+kx9+k)j=0ni=17j+211+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 5 + k}} - {x_{ - 9 + k}} = ({x_{5 + k}} - {x_{ - 9 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 3 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+7+kx7+k=(x7+kx7+k)j=0ni=17j+311+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 7 + k}} - {x_{ - 7 + k}} = ({x_{7 + k}} - {x_{ - 7 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 4 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+9+kx5+k=(x9+kx5+k)j=0ni=17j+411+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 9 + k}} - {x_{ - 5 + k}} = ({x_{9 + k}} - {x_{ - 5 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 5 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+11+kx3+k=(x11+kx3+k)j=0ni=17j+511+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 11 + k}} - {x_{ - 3 + k}} = ({x_{11 + k}} - {x_{ - 3 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Also, 7 j + 6 inserted in 2 by replacing n, j = 0 to j = n is obtained by summing, for k=0,1¯k = \overline {0,1} , x14n+13+kx1+k=(x13+kx1+k)j=0ni=17j+611+x2i1+kx2i3+kx2i5+kx2i7+kx2i9+kx2i11+k.{x_{14n + 13 + k}} - {x_{ - 1 + k}} = ({x_{13 + k}} - {x_{ - 1 + k}})\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 6} {1 \over {1 + {x_{2i - 1 + k}}{x_{2i - 3 + k}}{x_{2i - 5 + k}}{x_{2i - 7 + k}}{x_{2i - 9 + k}}{x_{2i - 11 + k}}}}. Now we obtained of the above formulas: x14n+k+1=x13+k(1x1+kx3+kx5+kx7+kx9+kx11+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j11+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 1}} = {x_{ - 13 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+3=x11+k(1x1+kx3+kx5+kx7+kx9+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+111+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 3}} = {x_{ - 11 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+5=x9+k(1x1+kx3+kx5+kx7+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+211+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 5}} = {x_{ - 9 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+7=x7+k(1x1+kx3+kx5+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+311+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 7}} = {x_{ - 7 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+9=x5+k(1x1+kx3+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+411+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 9}} = {x_{ - 5 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+11=x3+k(1x1+kx5+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+511+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k),\eqalign{& {{x_{14n + k + 11}} = {x_{ - 3 + k}}(1 - {{{x_{ - 1 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}),}}x14n+k+13=x1+k(1x3+kx5+kx7+kx9+kx11+kx13+k1+x1+kx3+kx5+kx7+kx9+kx11+k×j=0ni=17j+611+x2i11+kx2i9+kx2i7+kx2i5+kx2i3+kx2i1+k).\eqalign{& {{x_{14n + k + 13}} = {x_{ - 1 + k}}(1 - {{{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}{x_{ - 13 + k}}} \over {1 + {x_{ - 1 + k}}{x_{ - 3 + k}}{x_{ - 5 + k}}{x_{ - 7 + k}}{x_{ - 9 + k}}{x_{ - 11 + k}}}}} \cr & {\kern 20pt}{\kern 50pt}{\kern 50pt}{\kern 50pt} {\times \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 6} {1 \over {1 + {x_{2i - 11 + k}}{x_{2i - 9 + k}}{x_{2i - 7 + k}}{x_{2i - 5 + k}}{x_{2i - 3 + k}}{x_{2i - 1 + k}}}}).}}

Suppose that a1 = a3 = a5 = a7 = a9 = a11 = a13 = 0. By (e), we have limnx14n+1=limnx13(1x1x3x5x7x9x111+x1x3x5x7x9x11j=0ni=17j11+x2i1x2i3x2i5x2i7x2i9x2i11),a1=x13(1x1x3x5x7x9x111+x1x3x5x7x9x11j=0ni=17j11+x2i1x2i3x2i5x2i7x2i9x2i11)a1=01+x1x3x5x7x9x11x1x3x5x7x9x11=j=0ni=17j11+x2i1x2i3x2i5x2i7x2i9x2i11.\matrix{ {\lim n \to \infty {x_{14n + 1}} = \lim\limits_{n \to \infty } {x_{ - 13}}\left( {1 - {{{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}}}\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}} \right),} \cr {{a_1} = {x_{ - 13}}\left( {1 - {{{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}}}\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}} \right)} \cr {{a_1} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}.}} Similarly, a3=01+x1x3x5x7x9x11x1x3x5x7x9x13=j=0ni=17j+111+x2i1x2i3x2i5x2i7x2i9x2i11.{a_3} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. Similarly, a5=01+x1x3x5x7x9x11x1x3x5x7x11x13=j=0ni=17j+211+x2i1x2i3x2i5x2i7x2i9x2i11.{a_5} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. Similarly, a7=01+x1x3x5x7x9x11x1x3x5x9x11x13=j=0ni=17j+311+x2i1x2i3x2i5x2i7x2i9x2i11.{a_7} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. Similarly, a9=01+x1x3x5x7x9x11x1x3x7x9x11x13=j=0ni=17j+411+x2i1x2i3x2i5x2i7x2i9x2i11.{a_9} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. Similarly, a11=01+x1x3x5x7x9x11x1x5x7x9x11x13=j=0ni=17j+511+x2i1x2i3x2i5x2i7x2i9x2i11.{a_{11}} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. Similarly, a13=01+x1x3x5x7x9x11x3x5x7x9x11x13=j=0ni=17j+611+x2i1x2i3x2i5x2i7x2i9x2i11.{a_{13}} = 0 \Rightarrow {{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 6} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}. From 3 and 4, 1+x1x3x5x7x9x11x1x3x5x7x9x11=j=0ni=17j11+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x1x3x5x7x9x13=j=0ni=17j+111+x2i1x2i3x2i5x2i7x2i9x2i11,\matrix{ {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}}} =} & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} >} \hfill \cr & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}},}} thus, x−13 > x−11. From 4 and 51+x1x3x5x7x9x11x1x3x5x7x9x13=j=0ni=17j+111+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x1x3x5x7x11x13=j=0ni=17j+211+x2i1x2i3x2i5x2i7x2i9x2i11,\matrix{ {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 13}}}} = } & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 1} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} > } \hfill \cr & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}},}} thus, x−11 > x−9. From 5 and 6, 1+x1x3x5x7x9x11x1x3x5x7x11x13=j=0ni=17j+211+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x1x3x5x9x11x13=j=0ni=17j+311+x2i1x2i3x2i5x2i7x2i9x2i11,\matrix{{{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 11}}{x_{ - 13}}}} = } & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 2} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} > } \hfill \cr {} \hfill & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}},}} thus, x−9 > x−7. From 6 and 7, 1+x1x3x5x7x9x11x1x3x5x9x11x13=j=0ni=17j+311+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x1x3x7x9x11x13=j=0ni=17j+411+x2i1x2i3x2i5x2i7x2i9x2i11\matrix{{{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = } \hfill & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 3} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} > } \hfill \cr {} \hfill & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}}} thus, x−7 > x−5. From 7 and 8, 1+x1x3x5x7x9x11x1x3x7x9x11x13=j=0ni=17j+411+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x1x5x7x9x11x13=j=0ni=17j+511+x2i1x2i3x2i5x2i7x2i9x2i11\matrix{{{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 3}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = } \hfill & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 4} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} > } \hfill \cr {} \hfill & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}}}} thus, x−5 > x−3. From 8 and 9, 1+x1x3x5x7x9x11x1x5x7x9x11x13=j=0ni=17j+511+x2i1x2i3x2i5x2i7x2i9x2i11>1+x1x3x5x7x9x11x3x5x7x9x11x13=j=0ni=17j+611+x2i1x2i3x2i5x2i7x2i9x2i11,\matrix{{{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 1}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = } \hfill & {\sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 5} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}} > } \hfill \cr {} \hfill & {{{1 + {x_{ - 1}}{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}} \over {{x_{ - 3}}{x_{ - 5}}{x_{ - 7}}{x_{ - 9}}{x_{ - 11}}{x_{ - 13}}}} = \sum\limits_{j = 0}^n \prod\limits_{i = 1}^{7j + 6} {1 \over {1 + {x_{2i - 1}}{x_{2i - 3}}{x_{2i - 5}}{x_{2i - 7}}{x_{2i - 9}}{x_{2i - 11}}}},}} thus, x−3 > x−1. From here we obtain x−13 > x−11 > x−9 > x−7 > x−5 > x−3 > x−1. Similarly, we can obtain x−12 > x−10 > x−8 > x−6 > x−4 > x−2 > x0. We arrive at a contradiction which completes the proof of theorem.

Example 2

If the initial conditions are selected as follows: x13=0.98,x12=0.97,x11=0.96,x10=0.95,x9=0.94,x8=0.93,x7=0.92,x6=0.91,x5=0.9,x4=0.89,x3=0.88,x2=0.87,x1=0.86,x0=0.85.\eqalign{&{{x_{ - 13}} = 0.98,\;\;{x_{ - 12}} = 0.97,\;\;{x_{ - 11}} = 0.96,\;\;{x_{ - 10}} = 0.95,\;\;{x_{ - 9}} = 0.94,\;\;{x_{ - 8}} = 0.93,\;\;{x_{ - 7}} = 0.92,} \cr & {{x_{ - 6}} = 0.91,\;\;{x_{ - 5}} = 0.9,\;\;{x_{ - 4}} = 0.89,\;\;{x_{ - 3}} = 0.88,\;\;{x_{ - 2}} = 0.87,\;\;{x_{ - 1}} = 0.86,\;\;{x_0} = 0.85.}}

The graph of the solution is given below, xn = {0.62601, 0.634341, 0.701375, 0.701974, 0.737178, 0.734195, 0.753815, 0.748866, 0.759718, 0.753567, 0.759006, 0.752062, 0.753929, 0.746432, 0.535307, 0.545309, 0.621059, 0.622964, 0.664753, 0.66286, 0.687738, 0.683736, 0.698929, 0.693618, 0.702724, 0.696539, 0.701557, 0.694753, 0.487602, 0.498104, 0.576757, 0.579084, 0.623219, 0.621705, 0.64857, 0.644917, 0.661839, 0.656857, 0.667494,...}

Fig. 1

xn graph of the solution.

eISSN:
2444-8656
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics