This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Mohan UP, Tirupathi Pichiah PB, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – a review. Reprod. Toxicol. 2021;102:80-9. https://doi.org/10.1016/j.reprotox.2021.04.008Search in Google Scholar
Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. IJC Heart Vasc. 2024;50:101332. https://doi.org/10.1016/j.ijcha.2024.101332Search in Google Scholar
Linders AN, Dias IB, López Fernández T, et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging. 2024;10(1):9. https://doi.org/10.1038/s41514-024-00126-4Search in Google Scholar
Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci. 2024. https://doi.org/10.1016/j.jacbts.2024.02.001Search in Google Scholar
Rawat PS, Jaiswal A, Khurana A, et al. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. https://doi.org/10.1016/j.biopha.2021.111708Search in Google Scholar
Sheibani M, Azizi Y, Shayan M et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22(4):292-310. https://doi.org/10.1007/s12012-022-09647-2Search in Google Scholar
Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219-32. https://doi.org/10.1124/mol.119.116979Search in Google Scholar
Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900-5. https://doi.org/10.1056/NEJM199809243391301Search in Google Scholar
Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8. https://doi.org/10.1016/j.toxlet.2019.02.011Search in Google Scholar
Chen RC, Xu XD, Zhi Liu X, et al. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Evid Based Complement Alternat Med. 2015;2015(1):472565. https://doi.org/10.1155/2015/472565Search in Google Scholar
Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525-33. https://doi.org/10.1136/hrt.2007.134345Search in Google Scholar
Rochette L, Guenancia C, Gudjoncik A, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326-48. https://doi.org/10.1016/j.tips.2015.03.002Search in Google Scholar
Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76. https://doi.org/10.1007/s00204-016-1790-4Search in Google Scholar
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by plant-derived polyphenols and nanomaterials. Environ Res. 2023:116896. doi:10.1016/j.envres.2023.116896Search in Google Scholar
Zhang J, Cui X, Yan Y, et al. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res. 2016;8(7):2862.Search in Google Scholar
Zhang Q, Wu L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J Oncol. 2022;2022(1):7277562. doi:10.1155/2022/7277562Search in Google Scholar
Kuang Z, Ge Y, Cao L, et al. Precision treatment of anthracycline-induced cardiotoxicity: an updated review. Curr Treat Options Oncol. 2024;25(8):1038–54. doi:10.1007/s11864-024-01058-5Search in Google Scholar
Caspani F, Tralongo AC, Campiotti L, et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021;16(2):477–86. doi:10.1007/s11739-021-02790-5Search in Google Scholar
Hertog M, Bueno-de-Mesquita HB, Fehily AM, et al. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev. 1996;5(9):673–7. doi:10.1002/ijc.2910500202Search in Google Scholar
Kalender Y, Kaya S, Durak D et al.. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141–8. doi:10.1016/j.etap.2011.11.005Search in Google Scholar
Annapurna A, Reddy CS, Akondi RB, Rao SR. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2009;61(10):1365–74. doi:10.1211/jpp/61.10.0003Search in Google Scholar
Glässer G, Graefe E, Struck F, et al. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9(1):33–40. doi:10.1078/0944-7113-00006Search in Google Scholar
Voycheva C, Popova T, Slavkova M, et al. Doxorubicin and quercetin double loading in modified MCM-41 lowered cardiotoxicity in H9c2 cardioblast cells in vitro. Bioengineering. 2023;10(6):637. doi:10.3390/bioengineering10060637Search in Google Scholar
Li S-z, Li K, Zhang J-h, Dong Z. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anti-Cancer Agents Med Chem. 2013;13(2):352–5. doi:10.2174/1 8715206113130200352Search in Google Scholar
Dong Q, Chen L, Lu Q, Sharma S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi-1 expression. Br J Pharmacol. 2014;171(19):4440–54. doi:10.1111/bph.12810Search in Google Scholar
Dorostkar H, Haghiralsadat BF, Hemati M, et al. Reduction of doxorubicin-induced cardiotoxicity by co-administration of smart liposomal doxorubicin and free quercetin: in vitro and in vivo studies. Pharmaceutics. 2023;15(7):1920. doi:10.3390/pharmaceutics15071920Search in Google Scholar
Hashish FE, ElBatsh MM, El-Odemi MH, et al. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J. 2021;34(1):333–9. doi:10.4103/mmj.mmj_16_20Search in Google Scholar
Aziz TA. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats. Cancer Manag Res. 2021;2349–57. doi:10.2147/CMAR.S318141Search in Google Scholar
El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats: insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell. 2024;87:102313. doi:10.1016/j.tice.2024.102313Search in Google Scholar
Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23(2):192–6. doi:10.1038/ajh.2009.219Search in Google Scholar
Toklu HZ, Şehirli Ö, Erşahin M, et al. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol. 2010;62(12):1784–93. doi:10.1211/jpp.62.12.0009Search in Google Scholar
Chen L, Sun X, Wang Z, et al. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol. 2024;482:116794. doi:10.1016/j. taap.2024.116794Search in Google Scholar
Dolinsky VW, Rogan KJ, Sung MM, et al. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab. 2013;305(2):E243–53. doi:10.1152/ajpendo.00284.2013.Search in Google Scholar
Hu LF, Lan HR, Li XM, Jin KT. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid Med Cell Longev. 2021;2021:2951697. doi:10.1155/2021/2951697Search in Google Scholar
Gu J, Hu W, Zhang D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med. 2015;19(10):2324–8. doi:10.1111/jcmm.12647Search in Google Scholar
Lou Y, Wang Z, Xu Y, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med. 2015;36(3):873-80. doi:10.3892/ijmm.2015.2234.Search in Google Scholar
Gu J, Hu W, Song ZP, et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol. 2016;32:1–7. doi:10.1016/j. intimp.2016.01.016.Search in Google Scholar
Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine. 2024;103(7):e36593. doi:10.1097/MD.0000000000036593Search in Google Scholar
Mohammed HS, Hosny EN, Khadrawy YA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165665. doi:10.1016/j.bbadis.2020.165665Search in Google Scholar
Jain A, Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018;205:97–106. doi:10.1016/j.lfs.2018.03.029Search in Google Scholar
Swamy AV, Gulliaya S, Thippeswamy A, et al. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73–7. doi:10.4103/0253-7613.92628Search in Google Scholar
Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol. 1998;124(3):425–7. doi:10.1038/sj.bjp.0702134Search in Google Scholar
Imbaby S, Ewais M, Essawy S, Farag N. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol. 2014;33(8):800–13. doi:10.1177/0960327114539642Search in Google Scholar
Xu X, Chen K, Kobayashi S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther. 2012;341(1):183–95. doi:10.1124/jpet.112.197089Search in Google Scholar
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy, and doxorubicin-induced cardiotoxicity. Life Sci. 2017;180:160–70. doi:10.1016/j.lfs.2017.04.007Search in Google Scholar
Purgatorio R, Boccarelli A, Pisani L, et al. A critical appraisal of the protective activity of polyphenolic antioxidants against iatrogenic effects of anticancer chemotherapeutics. Antioxidants. 2024;13(1):133. doi:10.3390/antiox13010133Search in Google Scholar
Sergazy S, Shulgau Z, Fedotovskikh G, et al. Cardioprotective effect of grape polyphenol extract against doxorubicin-induced cardiotoxicity. Sci Rep. 2020;10(1):14720. doi:10.1038/s41598-020-71570-9Search in Google Scholar
Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, et al. The protective role of phenolic compounds against doxorubi- cin-induced cardiotoxicity: a comprehensive review. Nutr Cancer. 2016;68(6):892–917. doi:10.1080/01635581.2016.1212795Search in Google Scholar
Sahu R, Dua TK, Das S, et al. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-kB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem Toxicol. 2019;125:503–519. doi:10.1016/j.fct.2019.01.040Search in Google Scholar
Hescheler J, Meyer R, Plant S, et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86. doi:10.1161/01.RES.69.6.1476Search in Google Scholar
Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi:10.1124/pr.56.2.3Search in Google Scholar
Goodman J, Hochstein P. Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun. 1977;77(2):797–803. doi:10.1016/0006-291X(77)90446-4Search in Google Scholar
Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med. 1997;23(5):775-82. doi:10.1016/S0891-5849(97)00264-0Search in Google Scholar
Ma W, Wei S, Zhang B, Li W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol. 2020;8:434. doi:10.3389/fcell.2020.00434Search in Google Scholar
Koss-Mikołajczyk I, Todorovic V, Sobajic S, et al. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int J Mol Sci. 2021;22(18):10037. doi:10.3390/ijms221810037Search in Google Scholar
Yi X, Wang Q, Zhang M, et al. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2024;178:117217. doi:10.1016/j.biopha.2024.117217Search in Google Scholar
Angeloni C, Spencer J, Leoncini E, et al. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007;89(1):73-82. doi:10.1016/j. biochi.2006.06.006Search in Google Scholar
Yang C, Zhu Q, Chen Y, et al. Review of the protective mechanism of curcumin on cardiovascular disease. Drug Design, Development and Therapy. 2024;165-92. doi:10.2147/DDDT.S344720Search in Google Scholar
Gu J, Fan Yq, Zhang Hl, et al. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol. 2018;150:202-13. doi:10.1016/j. bcp.2018.02.017Search in Google Scholar
Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. Intracellular ROS protection enjciency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 2016;44(1):128-34. doi:10.3 109/21691401.2015.1026690Search in Google Scholar
Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep. 2016;35(3):1602-10. doi:10.3892/or.2016.4513Search in Google Scholar
Nouri A, Heidarian E, Amini-Khoei H, et al. Quercetin through mitigation of inflammatory response and oxidative stress exerts protective effects in rat model of diclofenac-induced liver toxicity. J Pharm Pharmacogn Res. 2019;7(3):200-12.Search in Google Scholar
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33.Search in Google Scholar
Zhou Y, Qian C, Tang Y, et al. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytotherapy Res. 2023;37(11):4999-5016. https://doi.org/10.1002/ptr.7966Search in Google Scholar
Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: from its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct.. 2014;5(10):2393-401. https://doi.org/10.1039/C4FO00413BSearch in Google Scholar
Iqbal M. Flavonoid-Mediated Modulation of CYP3A Enzyme and P-Glycoprotein Transporter: Potential Effects on Bioavailability and Disposition of Tyrosine Kinase Inhibitors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health: IntechOpen; 2020. doi:10.5772/inte-chopen.92712Search in Google Scholar
Liu X, Ye F, Wu J, et al. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;67(2):238-49. https://doi.org/10.1080/01635581.2015.989372Search in Google Scholar
Liu JP, Chen W, SchwarerAP, Li H. Telomerase in cancer immuno-therapy. Biochim. Biophys. Acta Rev. Cancer. 2010;1805(1):35-42. https://doi.org/10.1016/j.bbcan.2009.09.001Search in Google Scholar
Zhu P, Yang M, He H, et al. Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep.. 2019;20(2):1541-50. https://doi.org/10.3892/mmr.2019.10371Search in Google Scholar