Uneingeschränkter Zugang

Protective Effects of Quercetin, Curcumin and Resveratrol in an in Vitro Model of Doxorubicin-Induced Cardiotoxicity

, ,  und   
09. Sept. 2025

Zitieren
COVER HERUNTERLADEN

Mohan UP, Tirupathi Pichiah PB, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – a review. Reprod. Toxicol. 2021;102:80-9. https://doi.org/10.1016/j.reprotox.2021.04.008 Search in Google Scholar

Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. IJC Heart Vasc. 2024;50:101332. https://doi.org/10.1016/j.ijcha.2024.101332 Search in Google Scholar

Linders AN, Dias IB, López Fernández T, et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging. 2024;10(1):9. https://doi.org/10.1038/s41514-024-00126-4 Search in Google Scholar

Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci. 2024. https://doi.org/10.1016/j.jacbts.2024.02.001 Search in Google Scholar

Rawat PS, Jaiswal A, Khurana A, et al. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. https://doi.org/10.1016/j.biopha.2021.111708 Search in Google Scholar

Sheibani M, Azizi Y, Shayan M et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22(4):292-310. https://doi.org/10.1007/s12012-022-09647-2 Search in Google Scholar

Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219-32. https://doi.org/10.1124/mol.119.116979 Search in Google Scholar

Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900-5. https://doi.org/10.1056/NEJM199809243391301 Search in Google Scholar

Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8. https://doi.org/10.1016/j.toxlet.2019.02.011 Search in Google Scholar

Chen RC, Xu XD, Zhi Liu X, et al. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Evid Based Complement Alternat Med. 2015;2015(1):472565. https://doi.org/10.1155/2015/472565 Search in Google Scholar

Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525-33. https://doi.org/10.1136/hrt.2007.134345 Search in Google Scholar

Rochette L, Guenancia C, Gudjoncik A, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326-48. https://doi.org/10.1016/j.tips.2015.03.002 Search in Google Scholar

Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76. https://doi.org/10.1007/s00204-016-1790-4 Search in Google Scholar

Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by plant-derived polyphenols and nanomaterials. Environ Res. 2023:116896. doi:10.1016/j.envres.2023.116896 Search in Google Scholar

Zhang J, Cui X, Yan Y, et al. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res. 2016;8(7):2862. Search in Google Scholar

Zhang Q, Wu L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J Oncol. 2022;2022(1):7277562. doi:10.1155/2022/7277562 Search in Google Scholar

Kuang Z, Ge Y, Cao L, et al. Precision treatment of anthracycline-induced cardiotoxicity: an updated review. Curr Treat Options Oncol. 2024;25(8):1038–54. doi:10.1007/s11864-024-01058-5 Search in Google Scholar

Caspani F, Tralongo AC, Campiotti L, et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021;16(2):477–86. doi:10.1007/s11739-021-02790-5 Search in Google Scholar

Hertog M, Bueno-de-Mesquita HB, Fehily AM, et al. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev. 1996;5(9):673–7. doi:10.1002/ijc.2910500202 Search in Google Scholar

Kalender Y, Kaya S, Durak D et al.. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141–8. doi:10.1016/j.etap.2011.11.005 Search in Google Scholar

Annapurna A, Reddy CS, Akondi RB, Rao SR. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2009;61(10):1365–74. doi:10.1211/jpp/61.10.0003 Search in Google Scholar

Glässer G, Graefe E, Struck F, et al. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9(1):33–40. doi:10.1078/0944-7113-00006 Search in Google Scholar

Voycheva C, Popova T, Slavkova M, et al. Doxorubicin and quercetin double loading in modified MCM-41 lowered cardiotoxicity in H9c2 cardioblast cells in vitro. Bioengineering. 2023;10(6):637. doi:10.3390/bioengineering10060637 Search in Google Scholar

Li S-z, Li K, Zhang J-h, Dong Z. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anti-Cancer Agents Med Chem. 2013;13(2):352–5. doi:10.2174/1 8715206113130200352 Search in Google Scholar

Dong Q, Chen L, Lu Q, Sharma S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi-1 expression. Br J Pharmacol. 2014;171(19):4440–54. doi:10.1111/bph.12810 Search in Google Scholar

Dorostkar H, Haghiralsadat BF, Hemati M, et al. Reduction of doxorubicin-induced cardiotoxicity by co-administration of smart liposomal doxorubicin and free quercetin: in vitro and in vivo studies. Pharmaceutics. 2023;15(7):1920. doi:10.3390/pharmaceutics15071920 Search in Google Scholar

Hashish FE, ElBatsh MM, El-Odemi MH, et al. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J. 2021;34(1):333–9. doi:10.4103/mmj.mmj_16_20 Search in Google Scholar

Aziz TA. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats. Cancer Manag Res. 2021;2349–57. doi:10.2147/CMAR.S318141 Search in Google Scholar

El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats: insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell. 2024;87:102313. doi:10.1016/j.tice.2024.102313 Search in Google Scholar

Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23(2):192–6. doi:10.1038/ajh.2009.219 Search in Google Scholar

Toklu HZ, Şehirli Ö, Erşahin M, et al. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol. 2010;62(12):1784–93. doi:10.1211/jpp.62.12.0009 Search in Google Scholar

Chen L, Sun X, Wang Z, et al. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol. 2024;482:116794. doi:10.1016/j. taap.2024.116794 Search in Google Scholar

Dolinsky VW, Rogan KJ, Sung MM, et al. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab. 2013;305(2):E243–53. doi:10.1152/ajpendo.00284.2013. Search in Google Scholar

Hu LF, Lan HR, Li XM, Jin KT. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid Med Cell Longev. 2021;2021:2951697. doi:10.1155/2021/2951697 Search in Google Scholar

Gu J, Hu W, Zhang D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med. 2015;19(10):2324–8. doi:10.1111/jcmm.12647 Search in Google Scholar

Lou Y, Wang Z, Xu Y, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med. 2015;36(3):873-80. doi:10.3892/ijmm.2015.2234. Search in Google Scholar

Gu J, Hu W, Song ZP, et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol. 2016;32:1–7. doi:10.1016/j. intimp.2016.01.016. Search in Google Scholar

Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine. 2024;103(7):e36593. doi:10.1097/MD.0000000000036593 Search in Google Scholar

Mohammed HS, Hosny EN, Khadrawy YA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165665. doi:10.1016/j.bbadis.2020.165665 Search in Google Scholar

Jain A, Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018;205:97–106. doi:10.1016/j.lfs.2018.03.029 Search in Google Scholar

Swamy AV, Gulliaya S, Thippeswamy A, et al. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73–7. doi:10.4103/0253-7613.92628 Search in Google Scholar

Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol. 1998;124(3):425–7. doi:10.1038/sj.bjp.0702134 Search in Google Scholar

Imbaby S, Ewais M, Essawy S, Farag N. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol. 2014;33(8):800–13. doi:10.1177/0960327114539642 Search in Google Scholar

Xu X, Chen K, Kobayashi S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther. 2012;341(1):183–95. doi:10.1124/jpet.112.197089 Search in Google Scholar

Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy, and doxorubicin-induced cardiotoxicity. Life Sci. 2017;180:160–70. doi:10.1016/j.lfs.2017.04.007 Search in Google Scholar

Purgatorio R, Boccarelli A, Pisani L, et al. A critical appraisal of the protective activity of polyphenolic antioxidants against iatrogenic effects of anticancer chemotherapeutics. Antioxidants. 2024;13(1):133. doi:10.3390/antiox13010133 Search in Google Scholar

Sergazy S, Shulgau Z, Fedotovskikh G, et al. Cardioprotective effect of grape polyphenol extract against doxorubicin-induced cardiotoxicity. Sci Rep. 2020;10(1):14720. doi:10.1038/s41598-020-71570-9 Search in Google Scholar

Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, et al. The protective role of phenolic compounds against doxorubi- cin-induced cardiotoxicity: a comprehensive review. Nutr Cancer. 2016;68(6):892–917. doi:10.1080/01635581.2016.1212795 Search in Google Scholar

Sahu R, Dua TK, Das S, et al. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-kB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem Toxicol. 2019;125:503–519. doi:10.1016/j.fct.2019.01.040 Search in Google Scholar

Hescheler J, Meyer R, Plant S, et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86. doi:10.1161/01.RES.69.6.1476 Search in Google Scholar

Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi:10.1124/pr.56.2.3 Search in Google Scholar

Goodman J, Hochstein P. Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun. 1977;77(2):797–803. doi:10.1016/0006-291X(77)90446-4 Search in Google Scholar

Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med. 1997;23(5):775-82. doi:10.1016/S0891-5849(97)00264-0 Search in Google Scholar

Ma W, Wei S, Zhang B, Li W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol. 2020;8:434. doi:10.3389/fcell.2020.00434 Search in Google Scholar

Koss-Mikołajczyk I, Todorovic V, Sobajic S, et al. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int J Mol Sci. 2021;22(18):10037. doi:10.3390/ijms221810037 Search in Google Scholar

Yi X, Wang Q, Zhang M, et al. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2024;178:117217. doi:10.1016/j.biopha.2024.117217 Search in Google Scholar

Angeloni C, Spencer J, Leoncini E, et al. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007;89(1):73-82. doi:10.1016/j. biochi.2006.06.006 Search in Google Scholar

Yang C, Zhu Q, Chen Y, et al. Review of the protective mechanism of curcumin on cardiovascular disease. Drug Design, Development and Therapy. 2024;165-92. doi:10.2147/DDDT.S344720 Search in Google Scholar

Gu J, Fan Yq, Zhang Hl, et al. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol. 2018;150:202-13. doi:10.1016/j. bcp.2018.02.017 Search in Google Scholar

Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. Intracellular ROS protection enjciency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 2016;44(1):128-34. doi:10.3 109/21691401.2015.1026690 Search in Google Scholar

Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep. 2016;35(3):1602-10. doi:10.3892/or.2016.4513 Search in Google Scholar

Nouri A, Heidarian E, Amini-Khoei H, et al. Quercetin through mitigation of inflammatory response and oxidative stress exerts protective effects in rat model of diclofenac-induced liver toxicity. J Pharm Pharmacogn Res. 2019;7(3):200-12. Search in Google Scholar

Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33. Search in Google Scholar

Zhou Y, Qian C, Tang Y, et al. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytotherapy Res. 2023;37(11):4999-5016. https://doi.org/10.1002/ptr.7966 Search in Google Scholar

Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: from its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct.. 2014;5(10):2393-401. https://doi.org/10.1039/C4FO00413B Search in Google Scholar

Iqbal M. Flavonoid-Mediated Modulation of CYP3A Enzyme and P-Glycoprotein Transporter: Potential Effects on Bioavailability and Disposition of Tyrosine Kinase Inhibitors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health: IntechOpen; 2020. doi:10.5772/inte-chopen.92712 Search in Google Scholar

Liu X, Ye F, Wu J, et al. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;67(2):238-49. https://doi.org/10.1080/01635581.2015.989372 Search in Google Scholar

Liu JP, Chen W, SchwarerAP, Li H. Telomerase in cancer immuno-therapy. Biochim. Biophys. Acta Rev. Cancer. 2010;1805(1):35-42. https://doi.org/10.1016/j.bbcan.2009.09.001 Search in Google Scholar

Zhu P, Yang M, He H, et al. Curcumin attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep.. 2019;20(2):1541-50. https://doi.org/10.3892/mmr.2019.10371 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie, Klinische Medizin, Klinische Medizin, andere