Acceso abierto

Mechanisms and Effects of Dietary Restriction on CNS and Affective Disorders


Cite

1. Whiteford HA, Ferrari AJ, Degenhardt L et al. The global burden of mental, neurological and substance use disorders: an analysis from the global burden of disease study. PLoS ONE. 2015; 10: e0116820.10.1371/journal.pone.0116820Search in Google Scholar

2. Chisholm D, Sweeny K, Sheehan P et al. Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatry. 2016; 3: 415-424.10.1016/S2215-0366(16)30024-4Search in Google Scholar

3. Jorm AF, Patten SB, Brugha TS et al. Is the increased provision of treatment reduced the prevalence of common mental disorders? Review of the evidence from four countries. World Psychiatry. 2017; 16: 90-99.10.1002/wps.20388Search in Google Scholar

4. Jacka FN, Cherbuin N, Anstey KJ et al. Does reverse causality explain the relationship between diet and depression? J Affect Disord. 2015; 175: 248-250.Search in Google Scholar

5. Morris MS, Fava M, Jacques PF et al. Depression and folate status in the US population. Psychother Psychosom. 2003; 72 (2): 80-87.10.1159/000068692Search in Google Scholar

6. Sanchez Villegas A, Delgado RodrÃguez M, Alonso A et al. Association of the mediterranean dietary pattern with the incidence of depression: the seguimiento universidad de navarra/university of navarra follow-up (sun) cohort. Arch Gen Psychiatry. 2009; 66 (10): 1090-1098.10.1001/archgenpsychiatry.2009.129Search in Google Scholar

7. Masoro EJ. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ. 2003; 8: RE2.10.1126/sageke.2003.8.re2Search in Google Scholar

8. Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005; 16(3):129-137.10.1016/j.jnutbio.2004.12.007Search in Google Scholar

9. Bruce-Keller AJ, Umberger G, McFall R et al. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol. 1999; 45(1):8-15.10.1002/1531-8249(199901)45:1<8::AID-ART4>3.0.CO;2-VSearch in Google Scholar

10. Lutter M, KrishnanV, Russo SJ et al. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J Neurosci. 2008; 28(12): 3071-3075.10.1523/JNEUROSCI.5584-07.2008Search in Google Scholar

11. Taormina G, Mirisola MG. Calorie restriction in mammals and simple model organisms. Biomed Res Int. 2014; 6:1-10.10.1155/2014/308690Search in Google Scholar

12. Singh Kalra RR, Fults DW. Preuss award 121 leptomeningeal dissemination cascade in medulloblastoma. Neurosurgery. 2014; 61(Suppl 1):198-9.10.1227/01.neu.0000452395.39167.27Search in Google Scholar

13. Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82(6): 1367-75.10.1046/j.1471-4159.2002.01085.xSearch in Google Scholar

14. Green MW, Elliman NA, Rogers PJ. Lack of effect of short-term fasting on cognitive function. J Psychiatr Res. 1995; 29(3): 245-53.10.1016/0022-3956(95)00009-TSearch in Google Scholar

15. West, R.L. An application of prefrontal cortex function theory to cognitive aging. Psychol Bull. 1996; 120: 272-292.10.1037/0033-2909.120.2.272Search in Google Scholar

16. Willette, AA, Coe CL, Birdsill AC et al. Interleukin-8 and inter-leukin-10 brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. Age (Dordr). 2013; 35: 2215-2227.10.1007/s11357-013-9518-ySearch in Google Scholar

17. Moroi-Fetters SE, Mervis RF, London ED et al. Dietary restriction suppresses age-related changes in dendritic spines. Neurobiol Aging. 1989; 10: 317-322.10.1016/0197-4580(89)90042-0Search in Google Scholar

18. Guo J, Bakshi V, Lin AL. Early shifts of brain metabolism by caloric restriction preserve white matter integrity and long-term memory in aging mice. Front Aging. 2015; 7: 213-220.10.3389/fnagi.2015.00213464312526617514Search in Google Scholar

19. Parikh I, Guo J, Chuang KH et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016; 8: 2814-2826.10.18632/aging.101094519187227829242Search in Google Scholar

20. Wahl D, Cogger VC, Solon-Biet SM et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016; 31: 80-92.10.1016/j.arr.2016.06.006503558927355990Search in Google Scholar

21. Witte AV, Fobker M, Gellner R et al. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U. S. A. 2009; 106: 1255-1260.Search in Google Scholar

22. Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011; 14: 228-275.Search in Google Scholar

23. Mattson MP. Challenging oneself intermittently to improve health. Dose Response. 2014; 12(4): 600-18.10.2203/dose-response.14-028.Mattson426745225552960Search in Google Scholar

24. Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005; 16(3): 129-37.10.1016/j.jnutbio.2004.12.007Search in Google Scholar

25. Green MW, Rogers PJ, Elliman NA et al. Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol Behav. 1994; 55(3): 447-52.10.1016/0031-9384(94)90099-XSearch in Google Scholar

26. Rogers PJ, Green MW. Dieting, dietary restraint and cognitive performance. Br J Clin Psychol. 1993; 32(Pt 1):113-6.10.1111/j.2044-8260.1993.tb01034.x8467272Search in Google Scholar

27. Meeusen R. Exercise, nutrition and the brain. Sports Med. 2014; 44(Suppl 1): 47-56.10.1007/s40279-014-0150-5400882824791916Search in Google Scholar

28. Mattson MP. Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res Rev. 2015; 20: 37-45.10.1016/j.arr.2014.12.011434644125576651Search in Google Scholar

29. Moreno-Dominguez S, Rodriguez-Ruiz S, Fernandez-Santaella MC et al. Impact of fasting on food craving, mood and consumption in bulimia nervosa and healthy women participants. Eur Eat Disord Rev. 2012; 20(6): 461-467.10.1002/erv.218722764071Search in Google Scholar

30. Hussin NM, Shahar S, Teng, NI et al. Efficacy of fasting and calorie restriction (FCR) on mood and depression among ageing men. J Nutr Health Aging. 2013; 17(8): 674-680.10.1007/s12603-013-0344-924097021Search in Google Scholar

31. Michalsen A, Weidenhammer W, Melchart D et al. Short-term therapeutic fasting in the treatment of chronic pain and fatigue syndromes--well-being and side effects with and without mineral supplements. Forsch Komplementarmed Klass Naturheilkd. 2002; 9(4): 221-227.Search in Google Scholar

32. Michalsen A, Frey UH, Merse S et al. Hunger and mood during extended fasting are dependent on the GNB3 C825T polymorphism. Ann Nutr Metab. 2009; 54(3): 184-188.10.1159/00021781519420911Search in Google Scholar

33. Govic A, Levay EA, Kent S et al. The social behavior of male rats administered an adult-onset calorie restriction regimen. Physiol Behav. 2009; 96(4-5): 581-585.10.1016/j.physbeh.2008.12.01219150618Search in Google Scholar

34. Duan W, Guo Z, Jiang H et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A. 2003; 100: 2911-6.10.1073/pnas.053685610015144012589027Search in Google Scholar

35. Parikh I, Guo J, Chuang KH et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016; 8: 2814-26.10.18632/aging.101094519187227829242Search in Google Scholar

36. Moore MN, Shaw JP, Ferrar Adams DR et al. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis. Mar Environ Res. 2015; 107: 35-44.10.1016/j.marenvres.2015.04.00125881010Search in Google Scholar

37. Hempenstall S, Picchio L, Mitchell SE et al. The impact of acute caloric restriction on the metabolic phenotype in male C57BL/and DBA/2 mice. Mech Ageing Dev. 2010; 131: 111-8.10.1016/j.mad.2009.12.00820064544Search in Google Scholar

38. Dhahbi JM, Kim HJ, Mote PL et al. Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci U S A. 2004; 101: 5524-9.10.1073/pnas.030530010139741615044709Search in Google Scholar

39. Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003; 17: 313-321.Search in Google Scholar

40. Fusco S, Pani G. Brain response to calorie restriction. Cell Mol Life Sci. 2013; 70: 3157-3170.10.1007/s00018-012-1223-y23269433Search in Google Scholar

41. Banks WA. Blood–brain barrier and energy balance. Obesity (Silver Spring). 2006; 14, 234-237.Search in Google Scholar

42. Wolfgang MJ, Cha SH, Sidhaye A et al. Regulation of hypothalamic malonyl- CoA by central glucose and leptin. Proc Natl Acad Sci U. S. A. 2007; 104: 19285-19290.Search in Google Scholar

43. Garelick MG, Kennedy BK. TOR on the brain. Exp Gerontol. 2011; 46: 155-163.10.1016/j.exger.2010.08.030343228620849946Search in Google Scholar

44. Dong W, Wang R, Ma LN et al. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet. Aging Clin Exp Res. 2016; 28: 303-311.10.1007/s40520-015-0398-026138818Search in Google Scholar

45. Fusco S, Pani G. Brain response to calorie restriction. Cell Mol Life Sci. 2013; 70: 3157-3170.10.1007/s00018-012-1223-ySearch in Google Scholar

46. Satoh A, Brace CS, Ben-Josef G et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorso medial and lateral nuclei of the hypothalamus. J Neurosci. 2010; 30: 10220-10232.10.1523/JNEUROSCI.1385-10.2010292285120668205Search in Google Scholar

47. Hadem IKH, Sharma R. Differential regulation of hippocampal IGF-1-associated signaling proteins by dietary restriction in aging mouse. Cell Mol Neurobiol. 2017; 37: 985-993.10.1007/s10571-016-0431-727718093Search in Google Scholar

48. Harris GC, Wimmer M, Aston-Jones. The role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005; 437(7058): 556-559.10.1038/nature0407116100511Search in Google Scholar

49. Estabrooke IV, McCarthy MT, Ko E et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci. 2001; 21(5): 1656-1662.10.1523/JNEUROSCI.21-05-01656.2001Search in Google Scholar

50. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001; 2(August (8): 599-609.10.1038/3508506811483993Search in Google Scholar

51. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors forhormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011; 12(March(3): 141-51.10.1038/nrm3072432455521346730Search in Google Scholar

52. Seok S, Fu T, Choi SE et al. Transcriptional regulation ofautophagy by an FXR-CREB axis. Nature 2014; 516(December (7529): 108-11.10.1038/nature13949425789925383523Search in Google Scholar

53. Fusco S, Ripoli C, Podda MV et al. A role for neuronal cAMP responsiveelement binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U. S. A. 2012; 109(2): 621-626.Search in Google Scholar

54. Castren E, Voikar V, Rantamaki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol. 2007; 7(1): 18-21.10.1016/j.coph.2006.08.00917049922Search in Google Scholar

55. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003; 72: 609-642.10.1146/annurev.biochem.72.121801.16162912676795Search in Google Scholar

56. Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008; 33(3): 300-304.10.1007/s12020-008-9090-x19012000Search in Google Scholar

57. Amorosi M. Correlation between sport and depression. Psychiatr Danub. 2014; 26 Suppl 1: 208-210.Search in Google Scholar

58. Molina PE, Hashiguchi Y, Meijerink WJ et al. Modulation of endogenous opiate production: effect of fasting. Biochem. Biophys Res Commun. 1995; 207(1): 312-317.10.1006/bbrc.1995.11897857282Search in Google Scholar

59. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009; 59(2): 293-315.10.1016/j.brainresrev.2008.09.002264968218845187Search in Google Scholar

60. Sankowski R, Mader S, Valdes-Ferrer SI. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015; 9: 28.10.3389/fncel.2015.00028Search in Google Scholar

61. Di Benedetto S, Muller L, Wenger, E. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017; 75: 114-128.10.1016/j.neubiorev.2017.01.044Search in Google Scholar

62. Van Cauwenberghe C, Vandendriessche C, Libert C. Caloric restriction: Beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome. 2016; 27: 300-319.10.1007/s00335-016-9647-6Search in Google Scholar

63. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet. 2000; 25: 294-297.10.1038/77046Search in Google Scholar

64. Mulrooney TJ, Marsh J, Urits I et al. Influence of caloric restriction on constitutive expression of NF-kappaB in an experimental mouse astrocytoma. PLoS ONE. 2011; 6: e18085.10.1371/journal.pone.0018085Search in Google Scholar

65. Yeung F, Hoberg JE, Ramsey CS et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23: 2369-2380.10.1038/sj.emboj.7600244Search in Google Scholar

66. Spaulding CC, Walford RL, Effros RB. Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev. 1997; 93: 87-94.10.1016/S0047-6374(96)01824-6Search in Google Scholar

67. Satoh A, Brace CS, Ben-Josef G et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci. 2010; 30: 10220-10232.10.1523/JNEUROSCI.1385-10.2010292285120668205Search in Google Scholar

68. Vasconcelos AR, Cabral-Costa JV, Mazucanti CH et al. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol. (Lausanne) 2016; 7: 9.Search in Google Scholar

69. Wood JG, Rogina B, Lavu S et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004; 430: 686-689.10.1038/nature0278915254550Search in Google Scholar

70. Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005; 126: 987-1002.10.1016/j.mad.2005.03.01915893363Search in Google Scholar

71. Bass TM, Weinkove D, Houthoofd K et al. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. 2007; 128: 546-552.10.1016/j.mad.2007.07.00717875315Search in Google Scholar

72. Kaeberlein M, McDonagh T, Heltweg B et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005; 280: 17038-17045.10.1074/jbc.M50065520015684413Search in Google Scholar

73. Vellai T, Takacs-Vellai K, Zhang Y et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003; 426: 620.10.1038/426620a14668850Search in Google Scholar

74. Harrison DE, Strong R, Sharp ZD et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460: 392-395.10.1038/nature08221278617519587680Search in Google Scholar

75. Blattler SM, Cunningham JT, Verdeguer F et al. Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/ IGF signaling. Cell Metab. 2012; 15: 505-517.10.1016/j.cmet.2012.03.008332478422482732Search in Google Scholar

76. To K, Yamaza H, Komatsu T et al. Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp Gerontol. 2007; 42: 1063-1071.10.1016/j.exger.2007.07.00317709221Search in Google Scholar

77. Dhahbi JM, Mote PL, Fahy GM. Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics. 2005; 23: 343-350.10.1152/physiolgenomics.00069.200516189280Search in Google Scholar

78. Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One. 2010; 5: e8758.10.1371/journal.pone.0008758280745820090912Search in Google Scholar

eISSN:
0324-1750
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other