Multibody Dynamics Model of the Cycloidal Gearbox, Implemented in Fortran for Analysis of Dynamic Parameters Influenced by the Backlash as a Design Tolerance
Wikło M, Król R, Olejarczyk K, Kołodziejczyk K. Output torque ripple for a cycloidal gear train. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:7270–81. https://doi.org/10.1177/0954406219841656.Search in Google Scholar
Król R. Resonance phenomenon in the single stage cycloidal gear-box. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering 2021;68:303–20. https://doi.org/10.24425/ame.2021.137050.Search in Google Scholar
Król R. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 2018;19:523–7. https://doi.org/10.24136/atest.2018.125.Search in Google Scholar
Plöger DF, Zech P, Rinderknecht S. Vibration signature analysis of commodity planetary gearboxes. Mech Syst Signal Process 2019;119:255–65. https://doi.org/10.1016/j.ymssp.2018.09.014.Search in Google Scholar
Lei Y, Han D, Lin J, He Z. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech Syst Signal Process 2013;38:113–24. https://doi.org/10.1016/j.ymssp.2012.06.021.Search in Google Scholar
Wang T, Han Q, Chu F, Feng Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech Syst Signal Process 2019;126:662–85. https://doi.org/10.1016/j.ymssp.2019.02.051.Search in Google Scholar
Naveen P, Kiran R, Siva Sankaram EVS, Bha-radwaj TM. Design, Analysis and Simulation of Compact Cycloidal Drive. Int J Sci Res Sci Eng Technol 2020;7:216–20. https://doi.org/10.32628/ijsrset207547.Search in Google Scholar
Król R, Król K. Optymalizacja nieliniowa przekładni cykloidalnej z ograniczeniami równościowymi na wymiary obudowy. In: Pawliczek R, Owsinski R, Łagoda T, editors. Projektowanie, budowa i eksploatacja maszyn cz. 1, vol. 558, Opole: Politechnika Opolska; 2021, p. 95–108.Search in Google Scholar
Li T, An X, Deng X, Li J, Li Y. A new tooth profile modification method of cycloidal gears in precision reducers for robots. Applied Sciences 2020;10. https://doi.org/10.3390/app10041266.Search in Google Scholar
Kormin TG, Tsumbu JDB. Cycloidal reducer with rotation external ring gear. IOP Conf Ser Mater Sci Eng 2020;971. https://doi.org/10.1088/1757-899X/971/4/042072.Search in Google Scholar
Huang X, Zhang J. Analysis of Geometric Characteristics of Cycloidal Transmission. IOP Conf Ser Mater Sci Eng 2020;751:12059. https://doi.org/10.1088/1757-899X/751/1/012059.Search in Google Scholar
Huang JT, Li CW. The High-payload Manipulator Development Based on Novel Two-stage Cycloidal Speed Reducers and Hub Motors. J Phys Conf Ser 2020;1583:12002. https://doi.org/10.1088/1742-6596/1583/1/012002.Search in Google Scholar
Blagojevic M, Marjanovic N, Djordjevic Z, Stojanovic B, Disic A. A new design of a two-stage cycloidal speed reducer. Journal of Mechanical Design 2011;133. https://doi.org/10.1115/1.4004540.Search in Google Scholar
Olejarczyk K, Wiklo M, Król K, Kolodziejczyk K. Cycloidal disc calculation of cycloidal gear using finite element method. Logistyka 2015;6.Search in Google Scholar
Blagojevic M, Marjanovic N, Stojanovic B, Blagojević M, Marjanović N, Đorđević Z. Stress And Strain State Of Single-Stage Cy-Cloidal Speed Reducer. The 7th International Conference Research And Development Of Mechanical Elements And Systems Irmes, 2011.Search in Google Scholar
Strutynskyi S, Semenchuk R. Investigation of the accuracy of the manipulator of the robotic complex constructed on the basis of cycloidal transmission. Technology Audit and Production Reserves 2021;4:6–14. https://doi.org/10.15587/2706-5448.2021.237326.Search in Google Scholar
Chavan U, Joshi A, Kolambe Y, Gwalani H, Chaudhari H, Khalate A, et al. Magnification of energy transmission ratio using miniature cycloidal gear box for humanoids. IOP Conf Ser Mater Sci Eng 2022;1272:012017. https://doi.org/10.1088/1757-899X/1272/1/012017.Search in Google Scholar
Blagojevic M, Pantić I, Blagojević M. KINEMATIC ANALYSIS OF SINGLESTAGE CYCLOIDAL SPEED REDUCER. Machine Design 2015;7:113–8.Search in Google Scholar
Al Kouzbary M, Al Kouzbary H, Liu J, Khamis T, Al-Hashimi Z, Shasmin HN, et al. Robotic Knee Prosthesis with Cycloidal Gear and Four-Bar Mechanism Optimized Using Particle Swarm Algorithm. Actuators 2022;11. https://doi.org/10.3390/act11090253.Search in Google Scholar
Tonoli A, Amati N, Impinna F, Detoni G, Ruzimov S, Gasparin E, et al. Influence of dry friction on the irreversibility of cycloidal speed reducer. 5th World Tribology Congress, WTC 2013, 2013.Search in Google Scholar
Luo SM, Liao LX, Mo JY. Prediction of surface roughness of end milling for cycloidal gears based on orthogonal tests. Engineering Transactions 2018;66:339–52. https://doi.org/10.24423/EngTrans.860.20180830.Search in Google Scholar
Blagojevic M, Marjanovic N, Stojanovic B, Ivanovic L. Influence of the friction on the cycloidal speed reducer efficiency. Journal of the Balkan Tribological Association 2012;18:217–27.Search in Google Scholar
Bo W, Jiaxu W, Guangwu Z, Rongsong Y, Hongjun Z, Tao H. Mixed lubrication analysis of modified cycloidal gear used in the RV reducer. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2016;230:121–34. https://doi.org/10.1177/1350650115593301.Search in Google Scholar
Vasić M, Blagojević M, Dragoi M. Thermal stability of lubricants in cycloidal reducers. Engineering Today 2022;1:7–17. https://doi.org/10.5937/engtoday2202007v.Search in Google Scholar
Zaręba R, Mazur T, Olejarczyk K, Bzinkowski D. Measurement of the Cycloidal Drive Sleeves and Pins. Mechanika 2021;27:505–12. https://doi.org/10.5755/J02.MECH.27815.Search in Google Scholar
Petrovskiy AN. Increased efficiency of eccentric cycloidal engagement. Proceedings of Higher Educational Institutions Маchine Building 2021:3–14. https://doi.org/10.18698/0536-1044-2021-9-3-14.Search in Google Scholar
Olejarczyk K, Wikło M, Kołodziejczyk K, Król R, Król K. Theoretical and experimental verification of one stage cycloidal gearbox efficiency. Advances in Mechanism and Machine Science, vol. 73, Springer Science and Business Media B.V.; 2019, p. 1029–38. https://doi.org/10.1007/978-3-030-20131-9_102.Search in Google Scholar
Król R, Wikło M, Olejarczyk K, Kołodziejczyk K, Zieja A. Optimization of the one stage cycloidal gearbox as a non-linear least squares problem. Advances in Mechanism and Machine Science, 2019, p. 1039–48. https://doi.org/10.1007/978-3-030-20131-9_103.Search in Google Scholar
Sun X, Han L, Wang J. Tooth modification and loaded tooth contact analysis of China Bearing Reducer. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:6240–61. https://doi.org/10.1177/0954406219858184.Search in Google Scholar
Li T, Wang G, Deng X, An X, Xing C, Ma W. Contact Analysis of Cycloidal-pin Gear of RV Reducer under the Influence of Profile Error. J Phys Conf Ser 2019;1168:22095. https://doi.org/10.1088/1742-6596/1168/2/022095.Search in Google Scholar
Xu LX. A dynamic model to predict the number of pins to transmit load in a cycloidal reducer with assembling clearance. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:4247–69. https://doi.org/10.1177/0954406218809732.Search in Google Scholar
Xu LX, Chen BK, Li CY. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mech Mach Theory 2019;137:432–58. https://doi.org/10.1016/j.mechmachtheory.2019.03.035.Search in Google Scholar
Król R. Analysis of the backlash in the single stage cycloidal gearbox. Archive of Mechanical Engineering 2022;69:693–711. https://doi.org/10.24425/ame.2022.141521.Search in Google Scholar
Csobán A. Impacts of a profile failure of the cycloidal drive of a planetary gear on transmission gear. Lubricants 2021;9. https://doi.org/10.3390/lubricants9070071.Search in Google Scholar
Kostić N, Blagojević M, Petrović N, Matejić M, Marjanović N. Determination of real clearances between cycloidal speed reducer elements by the application of heuristic optimization. Transactions of Famena 2018;42:15–26. https://doi.org/10.21278/TOF.42102.Search in Google Scholar
Blagojević M, Matejić M, Kostić N. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnicki Vjesnik 2018;25:291–8. https://doi.org/10.17559/TV-20160530144431.Search in Google Scholar
Wikło M, Krzysztof O, Krzysztof K, Król K, Komorska I. Experimental vibration test of the cycloidal gearbox with different working conditions. Vibroengineering Procedia, vol. 13, EXTRICA; 2017, p. 24–7. https://doi.org/10.21595/vp.2017.19073.Search in Google Scholar
Hsieh CF, Jian WS. The effect on dynamics of using various transmission designs for two-stage cycloidal speed reducers. Proc Inst Mech Eng C J Mech Eng Sci 2016;230:665–81. https://doi.org/10.1177/0954406215618984.Search in Google Scholar
Xuan L, Xie C, Guan T, Lei L, Jiang H. Research on dynamic modeling and simulation verification of a new type of FT pin-cycloid transmission. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:6276–88. https://doi.org/10.1177/0954406219861999.Search in Google Scholar
Yang R, An Z. Theoretical calculation and experimental verification of the elastic angle of a cycloid ball planetary transmission based on the axial pretightening force. Advances in Mechanical Engineering 2017;9:1–17. https://doi.org/10.1177/1687814017734112.Search in Google Scholar
Król R. Software for the cycloidal gearbox multibody dynamics analysis, implemented in Fortran. (Purpose: presentation of the results in the scientific article) 2022. https://doi.org/10.5281/ZENODO.7221146.Search in Google Scholar
Nikravesh PE. Planar Multibody Dynamics. 2018. https://doi.org/10.1201/b22302.Search in Google Scholar
Nikravesh PE. Planar multibody dynamics: Formulation, programming and applications. 2007.Search in Google Scholar
Flores P, Lankarani HM. Contact Force Models for Multibody Dynamics. vol. 226. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-30897-5.Search in Google Scholar