1. bookVolumen 17 (2023): Heft 2 (June 2023)
22 Jan 2014
4 Hefte pro Jahr
Uneingeschränkter Zugang

Multibody Dynamics Model of the Cycloidal Gearbox, Implemented in Fortran for Analysis of Dynamic Parameters Influenced by the Backlash as a Design Tolerance

Online veröffentlicht: 10 May 2023
Volumen & Heft: Volumen 17 (2023) - Heft 2 (June 2023)
Seitenbereich: 272 - 280
Eingereicht: 10 Oct 2022
Akzeptiert: 05 Feb 2023
22 Jan 2014
4 Hefte pro Jahr

Wikło M, Król R, Olejarczyk K, Kołodziejczyk K. Output torque ripple for a cycloidal gear train. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:7270–81. https://doi.org/10.1177/0954406219841656. Search in Google Scholar

Król R. Resonance phenomenon in the single stage cycloidal gear-box. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering 2021;68:303–20. https://doi.org/10.24425/ame.2021.137050. Search in Google Scholar

Król R. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 2018;19:523–7. https://doi.org/10.24136/atest.2018.125. Search in Google Scholar

Plöger DF, Zech P, Rinderknecht S. Vibration signature analysis of commodity planetary gearboxes. Mech Syst Signal Process 2019;119:255–65. https://doi.org/10.1016/j.ymssp.2018.09.014. Search in Google Scholar

Lei Y, Han D, Lin J, He Z. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech Syst Signal Process 2013;38:113–24. https://doi.org/10.1016/j.ymssp.2012.06.021. Search in Google Scholar

Wang T, Han Q, Chu F, Feng Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech Syst Signal Process 2019;126:662–85. https://doi.org/10.1016/j.ymssp.2019.02.051. Search in Google Scholar

Naveen P, Kiran R, Siva Sankaram EVS, Bha-radwaj TM. Design, Analysis and Simulation of Compact Cycloidal Drive. Int J Sci Res Sci Eng Technol 2020;7:216–20. https://doi.org/10.32628/ijsrset207547. Search in Google Scholar

Król R, Król K. Optymalizacja nieliniowa przekładni cykloidalnej z ograniczeniami równościowymi na wymiary obudowy. In: Pawliczek R, Owsinski R, Łagoda T, editors. Projektowanie, budowa i eksploatacja maszyn cz. 1, vol. 558, Opole: Politechnika Opolska; 2021, p. 95–108. Search in Google Scholar

Li T, An X, Deng X, Li J, Li Y. A new tooth profile modification method of cycloidal gears in precision reducers for robots. Applied Sciences 2020;10. https://doi.org/10.3390/app10041266. Search in Google Scholar

Kormin TG, Tsumbu JDB. Cycloidal reducer with rotation external ring gear. IOP Conf Ser Mater Sci Eng 2020;971. https://doi.org/10.1088/1757-899X/971/4/042072. Search in Google Scholar

Huang X, Zhang J. Analysis of Geometric Characteristics of Cycloidal Transmission. IOP Conf Ser Mater Sci Eng 2020;751:12059. https://doi.org/10.1088/1757-899X/751/1/012059. Search in Google Scholar

Huang JT, Li CW. The High-payload Manipulator Development Based on Novel Two-stage Cycloidal Speed Reducers and Hub Motors. J Phys Conf Ser 2020;1583:12002. https://doi.org/10.1088/1742-6596/1583/1/012002. Search in Google Scholar

Blagojevic M, Marjanovic N, Djordjevic Z, Stojanovic B, Disic A. A new design of a two-stage cycloidal speed reducer. Journal of Mechanical Design 2011;133. https://doi.org/10.1115/1.4004540. Search in Google Scholar

Olejarczyk K, Wiklo M, Król K, Kolodziejczyk K. Cycloidal disc calculation of cycloidal gear using finite element method. Logistyka 2015;6. Search in Google Scholar

Blagojevic M, Marjanovic N, Stojanovic B, Blagojević M, Marjanović N, Đorđević Z. Stress And Strain State Of Single-Stage Cy-Cloidal Speed Reducer. The 7th International Conference Research And Development Of Mechanical Elements And Systems Irmes, 2011. Search in Google Scholar

Strutynskyi S, Semenchuk R. Investigation of the accuracy of the manipulator of the robotic complex constructed on the basis of cycloidal transmission. Technology Audit and Production Reserves 2021;4:6–14. https://doi.org/10.15587/2706-5448.2021.237326. Search in Google Scholar

Chavan U, Joshi A, Kolambe Y, Gwalani H, Chaudhari H, Khalate A, et al. Magnification of energy transmission ratio using miniature cycloidal gear box for humanoids. IOP Conf Ser Mater Sci Eng 2022;1272:012017. https://doi.org/10.1088/1757-899X/1272/1/012017. Search in Google Scholar

Blagojevic M, Pantić I, Blagojević M. KINEMATIC ANALYSIS OF SINGLESTAGE CYCLOIDAL SPEED REDUCER. Machine Design 2015;7:113–8. Search in Google Scholar

Al Kouzbary M, Al Kouzbary H, Liu J, Khamis T, Al-Hashimi Z, Shasmin HN, et al. Robotic Knee Prosthesis with Cycloidal Gear and Four-Bar Mechanism Optimized Using Particle Swarm Algorithm. Actuators 2022;11. https://doi.org/10.3390/act11090253. Search in Google Scholar

Tonoli A, Amati N, Impinna F, Detoni G, Ruzimov S, Gasparin E, et al. Influence of dry friction on the irreversibility of cycloidal speed reducer. 5th World Tribology Congress, WTC 2013, 2013. Search in Google Scholar

Luo SM, Liao LX, Mo JY. Prediction of surface roughness of end milling for cycloidal gears based on orthogonal tests. Engineering Transactions 2018;66:339–52. https://doi.org/10.24423/EngTrans.860.20180830. Search in Google Scholar

Blagojevic M, Marjanovic N, Stojanovic B, Ivanovic L. Influence of the friction on the cycloidal speed reducer efficiency. Journal of the Balkan Tribological Association 2012;18:217–27. Search in Google Scholar

Bo W, Jiaxu W, Guangwu Z, Rongsong Y, Hongjun Z, Tao H. Mixed lubrication analysis of modified cycloidal gear used in the RV reducer. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2016;230:121–34. https://doi.org/10.1177/1350650115593301. Search in Google Scholar

Vasić M, Blagojević M, Dragoi M. Thermal stability of lubricants in cycloidal reducers. Engineering Today 2022;1:7–17. https://doi.org/10.5937/engtoday2202007v. Search in Google Scholar

Zaręba R, Mazur T, Olejarczyk K, Bzinkowski D. Measurement of the Cycloidal Drive Sleeves and Pins. Mechanika 2021;27:505–12. https://doi.org/10.5755/J02.MECH.27815. Search in Google Scholar

Petrovskiy AN. Increased efficiency of eccentric cycloidal engagement. Proceedings of Higher Educational Institutions Маchine Building 2021:3–14. https://doi.org/10.18698/0536-1044-2021-9-3-14. Search in Google Scholar

Olejarczyk K, Wikło M, Kołodziejczyk K, Król R, Król K. Theoretical and experimental verification of one stage cycloidal gearbox efficiency. Advances in Mechanism and Machine Science, vol. 73, Springer Science and Business Media B.V.; 2019, p. 1029–38. https://doi.org/10.1007/978-3-030-20131-9_102. Search in Google Scholar

Król R, Wikło M, Olejarczyk K, Kołodziejczyk K, Zieja A. Optimization of the one stage cycloidal gearbox as a non-linear least squares problem. Advances in Mechanism and Machine Science, 2019, p. 1039–48. https://doi.org/10.1007/978-3-030-20131-9_103. Search in Google Scholar

Sun X, Han L, Wang J. Tooth modification and loaded tooth contact analysis of China Bearing Reducer. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:6240–61. https://doi.org/10.1177/0954406219858184. Search in Google Scholar

Li T, Wang G, Deng X, An X, Xing C, Ma W. Contact Analysis of Cycloidal-pin Gear of RV Reducer under the Influence of Profile Error. J Phys Conf Ser 2019;1168:22095. https://doi.org/10.1088/1742-6596/1168/2/022095. Search in Google Scholar

Xu LX. A dynamic model to predict the number of pins to transmit load in a cycloidal reducer with assembling clearance. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:4247–69. https://doi.org/10.1177/0954406218809732. Search in Google Scholar

Xu LX, Chen BK, Li CY. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mech Mach Theory 2019;137:432–58. https://doi.org/10.1016/j.mechmachtheory.2019.03.035. Search in Google Scholar

Król R. Analysis of the backlash in the single stage cycloidal gearbox. Archive of Mechanical Engineering 2022;69:693–711. https://doi.org/10.24425/ame.2022.141521. Search in Google Scholar

Csobán A. Impacts of a profile failure of the cycloidal drive of a planetary gear on transmission gear. Lubricants 2021;9. https://doi.org/10.3390/lubricants9070071. Search in Google Scholar

Kostić N, Blagojević M, Petrović N, Matejić M, Marjanović N. Determination of real clearances between cycloidal speed reducer elements by the application of heuristic optimization. Transactions of Famena 2018;42:15–26. https://doi.org/10.21278/TOF.42102. Search in Google Scholar

Blagojević M, Matejić M, Kostić N. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnicki Vjesnik 2018;25:291–8. https://doi.org/10.17559/TV-20160530144431. Search in Google Scholar

Wikło M, Krzysztof O, Krzysztof K, Król K, Komorska I. Experimental vibration test of the cycloidal gearbox with different working conditions. Vibroengineering Procedia, vol. 13, EXTRICA; 2017, p. 24–7. https://doi.org/10.21595/vp.2017.19073. Search in Google Scholar

Hsieh CF, Jian WS. The effect on dynamics of using various transmission designs for two-stage cycloidal speed reducers. Proc Inst Mech Eng C J Mech Eng Sci 2016;230:665–81. https://doi.org/10.1177/0954406215618984. Search in Google Scholar

Xuan L, Xie C, Guan T, Lei L, Jiang H. Research on dynamic modeling and simulation verification of a new type of FT pin-cycloid transmission. Proc Inst Mech Eng C J Mech Eng Sci 2019;233:6276–88. https://doi.org/10.1177/0954406219861999. Search in Google Scholar

Yang R, An Z. Theoretical calculation and experimental verification of the elastic angle of a cycloid ball planetary transmission based on the axial pretightening force. Advances in Mechanical Engineering 2017;9:1–17. https://doi.org/10.1177/1687814017734112. Search in Google Scholar

Król R. Software for the cycloidal gearbox multibody dynamics analysis, implemented in Fortran. (Purpose: presentation of the results in the scientific article) 2022. https://doi.org/10.5281/ZENODO.7221146. Search in Google Scholar

Nikravesh PE. Planar Multibody Dynamics. 2018. https://doi.org/10.1201/b22302. Search in Google Scholar

Nikravesh PE. Planar multibody dynamics: Formulation, programming and applications. 2007. Search in Google Scholar

Flores P, Lankarani HM. Contact Force Models for Multibody Dynamics. vol. 226. Cham: Springer International Publishing; 2016. https://doi.org/10.1007/978-3-319-30897-5. Search in Google Scholar

MSC Software. MSC Adams Solver Documentation n.d. Search in Google Scholar

MSC Software. MSC Adams View Documentation. n.d. Search in Google Scholar

Empfohlene Artikel von Trend MD