Acceso abierto

Experimental Analysis of Transverse Stiffness Distribution of Helical Compression Springs


Cite

This paper presents the results of an experimental analysis of the distribution of transverse stiffness of cylindrical compression helical springs with selected values of geometric parameters. The influence of the number of active coils and the design of the end coils on the transverse stiffness distribution was investigated. Experimental tests were carried out for 18 sets of spring samples that differed in the number of active coils, end-coil design and spring index, and three measurements were taken per sample, at two values of static axial deflection. The transverse stiffness in the radial directions were tested at every 30° angle. A total of 1,296 measurements were taken, from which the transverse stiffness distributions were determined. It was shown that depending on the direction of deflection, the differences between the highest and lowest value of transverse stiffness of a given spring can exceed 25%. The experimental results were compared with the results of the formulas for transverse stiffness available in the literature. It was shown that in the case of springs with a small number of active coils, discrepancies between the average transverse stiffness of a given spring and the transverse stiffness calculated based on literature relations can reach several tens of percent. Analysis of the results of the tests carried out allowed conclusions to be drawn, making it possible to estimate the suitability of a given computational model for determining the transverse stiffness of a spring with given geometrical parameters.