Acceso abierto

Automotive MR Shock Absorber Behaviour Considering Temperature Changes: Experimental Testing and Analysis


Cite

1. Bajkowski J., Skalski P. (2012), Analysis of Viscoelastic Properties of a Magnetorheological Fluid in a Damper, Acta Mechanica et Automatica, 6(3), 5–410.Search in Google Scholar

2. Batterbee D., Sims N. D. (2009), Temperature Sensitive Controller Performance of MR Dampers, Journal of Intelligent Material Systems and Structures, 20, 297–30910.1177/1045389X08093824Search in Google Scholar

3. Choi S. B., Han S. S., Han Y. M. (2005), Vibration Control of a Smart Material Based Damper System Considering Temperature Variation and Time Delay, Acta Mechanica, 180(1–4), 73–82.10.1007/s00707-005-0266-7Search in Google Scholar

4. FLIR Systems Inc. (2019), User’s manual FLIR Exx series, Technical Documentation,https://www.flir.euSearch in Google Scholar

5. FLUKE Corp. (2019), 8845A/8846A Digital Multimeter. Users Manual. Technical Documentation, http://www.fluke.comSearch in Google Scholar

6. Gołdasz J., Sapiński B. (2019), Influence of temperature on the MR squeeze-mode damper, Proceedings of 20th International Carpathian Control Conference ICCC 2019.10.1109/CarpathianCC.2019.8766014Search in Google Scholar

7. Gołdasz J., Sapiński B., Jastrzębski Ł. (2018), Assessment of the Magnetic Hysteretic Behaviour of MR Dampers through Sensorless Measurements, vol. 2018, Article ID 3740208, 21 pages.10.1155/2018/3740208Search in Google Scholar

8. Gordaninejad F., Breese D. G. (1999), Heating of Magnetorheological Fluid Dampers, Journal of Intelligent Material Systems and Structures, 10(8), 634–645.10.1106/55D1-XAXP-YFH6-B2FBSearch in Google Scholar

9. INTECO Ltd. (2019), RT-DAC4/PCI Multi I/O board. User’s Guide, Technical Documentation, http://www.inteco.com.plSearch in Google Scholar

10. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Shock Absorber, Acta Mechanica et Automatica, 11(4), 253–259.10.1515/ama-2017-0039Search in Google Scholar

11. Kubik M., Gołdasz J. (2019), Multiphysics Model of an MR Damper including Magnetic Hysteresis, Shock and Vibration, Article ID 3246915, 20 pages.10.1155/2019/3246915Search in Google Scholar

12. McKee M., Gordaninejad F., Wang X. (2018), Effects of temperature on performance of compressible magnetorheological fluid suspension systems, Journal of Intelligent Material Systems and Structures, 29(1), 41–51.10.1177/1045389X17705203Search in Google Scholar

13. MTS System Corp. (2019), MTS 810 & 858 Material Testing Systems, Technical Documentation, http://www.mts.comSearch in Google Scholar

14. Sapiński B., Jastrzębski Ł., Rosół M. (2012), Power amplifier supporting MR fluid-based actuators, Proceedings of 13th International Carpathian Control Conference ICCC 2012, 612–616.10.1109/CarpathianCC.2012.6228719Search in Google Scholar

15. Sims N. D. (2006), Limit Cycle Behaviour of Smart Fluid Dampers under Closed-loop Control, Journal of Vibration and Acoustics, 128(4), 413–428.10.1115/1.2212444Search in Google Scholar

16. Strecker Z., Roupec J., Mazurek I., Klapka M., (2015), Limiting factors of the response time of the magnetorheological damper, International Journal of Applied Electromagnetics and Mechanics, 47(2), 541–550.10.3233/JAE-140006Search in Google Scholar

17. WEISS TECHNIK. (2019), Climate Test Chamber, Technical Documentation, https://www.weiss-technik.comSearch in Google Scholar