[1. Bali E., Erzan Topcu E. (2018), Design of on-off type solenoid valve for electropneumatic brake system and investigation of its statistics characteristics, International Journal of Advances on Automotive and Technology, 2(3): 175–184.10.15659/ijaat.18.09.995]Search in Google Scholar
[2. Bensetti M., Bihan Y.L., Marchand C. (2006), Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators, Sensors and Actuators A: Physical, 129(1): 207–211.10.1016/j.sna.2005.11.060]Search in Google Scholar
[3. Bielaczyc P., Woodburn J. (2018), Trends in automotive emissions legislation: impact on LD engine development, fuels, lubricants, and test methods - a global view, with a focus on WLTP and RDE regulations - Summary of the 6th International Exhaust Emissions Symposium (IEES), Combustion Engines, 174(3): 56–6510.19206/CE-2018-306]Search in Google Scholar
[4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1): 1–6.10.17531/ein.2015.1.1]Search in Google Scholar
[5. Borawski A. (2015a), Simulation studies of LPG injector used in 4th generation installations, Combustion Engines, 160(1): 49–55.10.19206/CE-116901]Search in Google Scholar
[6. Borawski A. (2018). Simulation Study of the Process of Friction in the Working Elements of a Car Braking System at Different Degrees of Wear. Acta Mechanica et Automatica, 12(3): 221–226.]Search in Google Scholar
[7. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs - a review, Acta Mechanica et Automatica, 13(3): 189–199.10.2478/ama-2019-0025]Search in Google Scholar
[8. Brumercik F.; Lukac M.; Caban J. Krzysiak Z.; Glowacz A. (2020), Comparison of selected parameters of a planetary gearbox with involute and convex–concave teeth flank profiles, Applied Science, 10: 1417.10.3390/app10041417]Search in Google Scholar
[9. Cao Y., Teng W., Zhang H. (2007), Dynamic modeling and hardware-in-the-loop simulation testing for LPG engine, Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2093–2098.10.1109/ICMA.2007.4303874]Search in Google Scholar
[10. Cheng Q., Zhang Z.-D., Guo H., Xie N.-L. (2015), Electro-magnetic-thermal coupling of GDI injector, Journal of Jilin University (Engineering and Technology Edition), 45(3): 806–813]Search in Google Scholar
[11. Cheng Q., Zhang Z-D., Guo H., Xie N-L. (2014), Simulation and analysis on electro-magnetic-thermal coupling of solenoid GDI injector, International Journal of Applied Electromagnetics and Mechanics, 46(4): 775–792.10.3233/JAE-141973]Search in Google Scholar
[12. Cheung N.C., Lim K.W., Rahman M. F. (1993), Modelling a linear and limited travel solenoid, Proceedings of IECON ‘93 - 19th Annual Conference of IEEE Industrial Electronics, 3: 1567–1572.]Search in Google Scholar
[13. Chu L., Hou Y., Liu M., Li J., Gao Y., Ehsani M. (2007), Study on the dynamic characteristics of pneumatic ABS solenoid valve for commercial Vehicle, 2007 IEEE Vehicle Power and Propulsion Conference, 641–644.10.1109/VPPC.2007.4544201]Search in Google Scholar
[14. Cvetkovic D, Cosic I., Subic A. (2008), Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach, International Journal of Applied Electromagnetics and Mechanics, 27: 251–273.10.3233/JAE-2008-939]Search in Google Scholar
[15. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Wydawnictwo Politechniki Lubelskiej, Lublin.]Search in Google Scholar
[16. Czarnigowski J., Jaklinski P., Wendeker M., Pietrykowski K., Gabowski Ł. (2009), The analyses of the phenomena inside a CNG flap-valve injector during gas flow. Combustion Engines, 1(136): 10–18.10.19206/CE-117215]Search in Google Scholar
[17. Czarnigowski J., Wendeker M., Jakliński P., Rola M., Grabowski Ł., Pietrykowski K. (2007), CFD model of fuel rail for LPG systems, JSAE/SAE International Fuels & Lubricants Meeting, 2007-01-2053.10.4271/2007-01-2053]Search in Google Scholar
[18. Demarchi A., Farçoni L., Pinto A., Lang R., Romero R., Silva I. (2018), Modelling a solenoid’s valve movement, In: Akiyama H., Obst O., Sammut C., Tonidandel F. (eds) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. Lecture Notes in Computer Science, Cham: Springer, 11175.]Search in Google Scholar
[19. Dimitrova Z., Maréchal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151: 168–177.10.1016/j.apenergy.2015.03.057]Search in Google Scholar
[20. Dongiovanni C., Coppo M. (2010), Accurate Modelling of an Injector for Common Rail Systems. In book: Siano D. Fuel Injection, London: IntechOpen Limited, 6: 95–119.]Search in Google Scholar
[21. Duk M., Czarnigowski J. (2001), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b): 59–63.]Search in Google Scholar
[22. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12): 731–734.10.3103/S1068371215120111]Search in Google Scholar
[23. Haiping Y., Xianyi Q. (2010), The calculation of main parameters of the gasoline engine fuel injection system, Proceeding of the International Conference on Computer Application and System Modeling (ICCASM), V13–635.10.1109/ICCASM.2010.5622197]Search in Google Scholar
[24. Hung N.B., Lim O.T. (2019), Improvement of electromagnetic force and dynamic response of a solenoid injector based on the effects of key parameters, International Journal of Automotive Technology, 20: 949-960.10.1007/s12239-019-0089-5]Search in Google Scholar
[25. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6): 571–579.10.2516/ogst:2004041]Search in Google Scholar
[26. Kamiński Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4): 289–311.10.1504/IJHVS.2013.056802]Search in Google Scholar
[27. Kamiński Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4): 637–643.]Search in Google Scholar
[28. Leduc L., Dubar B., Ranini A., Monnier G. (2003), Downsizing of gasoline engine: an efficient way to reduce CO2 emissions. Oil & Gas Science Technology, 58(1): 115–127.10.2516/ogst:2003008]Search in Google Scholar
[29. Li P.X., Su M., Zhang D.B. (2017), Response characteristic of high-speed on/off valve with double voltage driving circuit, IOP Conference Series: Materials Science and Engineering, 220: 012028.10.1088/1757-899X/220/1/012028]Search in Google Scholar
[30. Lim K.W., Cheung N.C., Kahman M.F. (1994), Proportional control of a solenoid actuator, Proceedings of IECON’94 - 20th Annual Conference of IEEE Industrial Electronics, 2045–2050.]Search in Google Scholar
[31. Liu Y.-F., Dai, Z.-K., Xu X.-Y., Tian L. (2011), Multi-domain modeling and simulation of proportional solenoid valve, Journal of Central South University Technology, 18: 1589–1594.10.1007/s11771-011-0876-2]Search in Google Scholar
[32. Liu Z., Ouyang G. (2009), Numerical analysis of common rail electro-injector for diesel engine, Proceedings of the International 2009 Conference on Mechatronics and Automation (IEEE), 1683–1688.10.1109/ICMA.2009.5246365]Search in Google Scholar
[33. Lu F., Jensen D. (2003), Potential viability of a fast-acting micro-solenoid valve for pulsed detonation fuel injection, 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 2003-0888.10.2514/6.2003-888]Search in Google Scholar
[34. Lunge, S.P., Kurode S.R. (2013), Proportional actuator from on off solenoid valve using sliding modes, Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), 1020–1027.]Search in Google Scholar
[35. Marčič S., Marčič M., Praunseis Z. (2015), Mathematical Model for the Injector of a Common Rail Fuel-Injection System. Engineering, 7: 307–321.10.4236/eng.2015.76027]Search in Google Scholar
[36. Marczuk A., Caban J., Aleshkin A.V., Savinykh P.A., Isupov A.Y., Ivanov I.I. (2019), Modeling and simulation of particle motion in the operation area of a centrifugal rotary chopper machine, Sustainability, 11(18): 1–15.10.3390/su11184873]Search in Google Scholar
[37. Matkowić K., Jelović M., Jurić J., Konyha Z., Gračanin D. (2005), Interactive visual analysis and exploration of injection system simulations, Proceedings of the International Conference on Vizualization (VIS 05. IEEE), 391–398.]Search in Google Scholar
[38. Mehlfeldt D., Weckenmann H., Stöhr G. (2008), Modeling of piezoelectrically actuated fuel injectors, Mechatronics, 18: 264–272.10.1016/j.mechatronics.2008.03.001]Search in Google Scholar
[39. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2): 301–310.10.17531/ein.2019.2.15]Search in Google Scholar
[40. Mieczkowski G. (2019a), Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers, Acta Mechanica et Automatica, 13(1): 30–36.10.2478/ama-2019-0005]Search in Google Scholar
[41. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222.10.3390/s20010222698278631906057]Search in Google Scholar
[42. Mieczkowski G., Molski K., Seweryn A. (2007), Finite-element modeling of stresses and displacements near the tips of pointed inclusions, Materials Science, 43(2): 183–194.10.1007/s11003-007-0021-4]Search in Google Scholar
[43. Mikulski M., Balakrishnan P.R., Doosje E., Bekdemir C. (2018), Variable valve actuation strategies for better efficiency load range and thermal management in an RCCI engine, SAE Technical Papers, 2018-01-0254.10.4271/2018-01-0254]Search in Google Scholar
[44. Mikulski M., Wierzbicki S., Piętak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering, 36(2): 225–238.10.1515/cpe-2015-0015]Search in Google Scholar
[45. Li M.H., Jiang F. (2010), Simulation research on fuel injection system of 16V265H Dielsel engine introduced from U.S., Proceedings of the International Conference on E-Product E-Service and E-Entertainment (ICEEE), 4796–4799.]Search in Google Scholar
[46. Morselli R., Corti E., Rizzoni G. (2002), Energy based model of a common rail injector, Proceeding of the International Conference on Control Applications (IEEE), 2: 1195–1200.10.1115/IMECE2002-32101]Search in Google Scholar
[47. Mustafa K.F., Gitano-Briggs H.W. (2009), Liquefied petroleum gas (LPG) as an alternative fuel in spark ignition engine: Performance and emission characteristics. Proceedings of the International Conference Energy and Environment (ICEE), 189–194.10.1109/ICEENVIRON.2009.5398647]Search in Google Scholar
[48. Onishi S., Jo S.H., Shoda K., Jo P.D., Kato S. (1979), Active thermo-atmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper, 790501.]Search in Google Scholar
[49. Pacurar C., Topa V., Munteanu C., Racasan A., Hebedean C., Oglejan R., Vlad G. (2015), Solenoid actuator parametric analysis and numerical modeling, Acta Electrotehnica, 56(3): 246–251.]Search in Google Scholar
[50. Passarini L.C., Nakajima P.R. (2003), Development of a high-speed solenoid valve: an investigation of the importance of the armature mass on the dynamic response, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXV(4): 329–335.10.1590/S1678-58782003000400003]Search in Google Scholar
[51. Passarini L.C., Pinotti JR, M. (2003), A new model for fast-acting electromagnetic fuel injector analysis and design, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(1): 95–106.10.1590/S1678-58782003000100014]Search in Google Scholar
[52. Plavec E., Ladisic I., Vidovic M. (2019), The impact of coil winding angle on the force of DC solenoid electromagnetic actuator, Advances in Electrical & Electronic Engineering, 17(3): 244–250.10.15598/aeee.v17i3.3338]Search in Google Scholar
[53. Pogulyaev Y.D., Baitimerov R., Rozhdestvensky Y. (2015), Detailed dynamic modeling of common rail piezo injector, Procedia Engineering, 129: 93–98.10.1016/j.proeng.2015.12.014]Search in Google Scholar
[54. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6): 501–506.10.5755/j01.mech.21.6.11147]Search in Google Scholar
[55. Rahman M. F., Cheung N. C., Lim K. W. (1996a), Converting a switching solenoid to a proportional actuator, IEEJ Transactions on Electrical and Electronic Engineering, I-16(5): 531–537.10.1541/ieejias.116.531]Search in Google Scholar
[56. Rahman M. F., Cheung N. C., Lim K. W. (1996b), Modeling of a nonlinear solenoid toward the development of a proportional actuator, Procceedings of the 5th International Conferences Modeling and Simulation of Electrical Machines Convertors and Systems ELECTRIMACS’96, 2: 695–670.]Search in Google Scholar
[57. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1): 380–396.10.1016/j.rser.2016.09.109]Search in Google Scholar
[58. Raslavičius L., Keršys A., Mockus S., Keršiene N., Starevičius M. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32: 513–525.10.1016/j.rser.2014.01.052]Search in Google Scholar
[59. Ristovski Z.D., Jayaratne E.R., Morawska L., Ayoko G.A., Lim M. (2005), Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel, Science of the Total Environment, 345: 93–98.10.1016/j.scitotenv.2004.10.02115919531]Search in Google Scholar
[60. Shamdani, A.H., Shamekhi, A.H., Basharhagh, M.Z. (2006). Modeling and Simulation of a Diesel Engine Common Rail Injector in Matlab/Simulink, 14th Annual (International) Mechanical Engineering Conference, 7.]Search in Google Scholar
[61. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181: 200–205.10.1016/j.proeng.2017.02.370]Search in Google Scholar
[62. Szpica D. (2016), Modeling of current limitation through the PWM signal in LPG injectors, Proceedings of 20th International Scientific Conference Transport Means 2016, 536–539.]Search in Google Scholar
[63. Szpica D. (2016a), Testing the parameters of LPG injector solenoids as a function of the lift of the working component and the frequency of impulses, Proceedings of 20th International Scientific Conference Transport Means 2016, 551–555.]Search in Google Scholar
[64. Szpica D. (2017), Comparative analysis of low pressure gas-phase injector’s characteristics, Flow Measurement and Instrumentation, 58: 74–86.10.1016/j.flowmeasinst.2017.09.012]Search in Google Scholar
[65. Szpica D. (2018), Investigating fuel dosage non-repeatability of low pressure gas-phase injectors, Flow Measurement and Instrumentation, 59: 147–156.10.1016/j.flowmeasinst.2017.12.009]Search in Google Scholar
[66. Szpica D. (2018a), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1): 186–196.10.3846/16484142.2016.1149884]Search in Google Scholar
[67. Szpica D. (2018b), Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors, Measurement, 118: 253–261.10.1016/j.measurement.2018.01.045]Search in Google Scholar
[68. Taghizadeh M, Ghaffari A, Najafi F. (2009), Modeling and identification of a solenoid valve for PWM control applications, Comptes Rendus Mecanique, 337(3): 131–140.10.1016/j.crme.2009.03.009]Search in Google Scholar
[69. Tian H, Zhao Y. (2018), Coil inductance model based solenoid on/off valve spool displacement sensing via laser calibration. Sensors, 18(12): 4492.10.3390/s18124492630857530567414]Search in Google Scholar
[70. Valtek Type 30 – technical data. [online] [02.08.2018]. Available at: https://www.valtek.it.]Search in Google Scholar
[71. Waluś K.J., Warguła Ł., Krawiec P., Adamiec J.M.. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4): 3243–3259.10.1007/s11356-017-0847-8581157029238926]Search in Google Scholar
[72. Warguła Ł., Krawiec P., Waluś K.J., Kukla M. (2020), Fuel consumption test results for a self-adaptive, maintenance-free wood chipper drive control system, Applied Sciences, 10(8): 2727.10.3390/app10082727]Search in Google Scholar
[73. Wendeker M., Jakliński P., Gabowski Ł., Pietrykowski K., Czarnigowski J., Hunicz J. (2007), Model of CNG flap valve injector for internal combustion engines, Combustion Engines, 4(131): 42–52.10.19206/CE-117317]Search in Google Scholar
[74. Xiang Z., Liu H., Tao G-L, Man J., Zhong W. (2008), Development of an ε-type actuator for enhancing high-speed electro-pneumatic ejector valve performance, Journal of Zhejiang University - Science A, 9(11): 1552–1559.10.1631/jzus.A0820350]Search in Google Scholar
[75. Yang L.-J., Fu Q.-F., Qu Y.-Y., Zhang W., Du M.-L., Xu B.-R. (2012), Spray characteristics of gelled propellants in swirl injectors, Fuel, 97: 253–261.10.1016/j.fuel.2012.02.036]Search in Google Scholar
[76. Yang W.Y., Cao W., Chung T.S., Morris J. (2005), Applied Numerical Methods Using MATLAB; John Wiley & Sons Inc., New Jersey.10.1002/0471705195]Search in Google Scholar