Acceso abierto

The Impact of Non-Parallelism of Toothed Gear Shafts Axes and Method of Gear Fixing on Gearbox Components Vibrations


Cite

1. Åkerblom M., Sellgren U. (2008), Gearbox noise and vibration − influence of bearing preload, TRITA-MMK 2008:17.Search in Google Scholar

2. Dogruer C.U., Pirsoltan A.K. (2017), Active vibration control of a single-stage spur gearbox, Mechanical Systems and Signal Processing, 85, 429–444.10.1016/j.ymssp.2016.08.032Search in Google Scholar

3. Feng Z., Zuo M.J. (2012), Vibration signal models for fault diagnosis of planetary gearboxes, Journal of Sound and Vibration, 331, 4919–4939.10.1016/j.jsv.2012.05.039Search in Google Scholar

4. Figlus T., Wilk A., Madej H. (2010). A study of the influence of ribs shape on the gear transmission housing vibroactivity, Transport Problems, 5 (1), 63–69.Search in Google Scholar

5. Grega R., Krajňák J., Žuľová L., Fedorko G., Molnár V. (2017), Failure analysis of driveshaft of truck body caused by vibrations, Engineering Failure Analysis, 79, 208–215.10.1016/j.engfailanal.2017.04.023Search in Google Scholar

6. Grega R., Homišin J., Krajňak J., Urbanský M. (2016), Analysis of the impact of flexible couplings on gearbox vibrations, Scientific Journal of Silesian University of Technology, Series Transport., 91, 43–50.10.20858/sjsutst.2016.91.4Search in Google Scholar

7. Kaczynski R., Hoscilo B. (2017): Mechanical and friction characteristics of the coating surface of the cutting tool on the basis of instrumental measurements micro-hardness and scratch-test, Friction and Wear, 38(2), 92–100.10.3103/S1068366617020118Search in Google Scholar

8. Kaczyński R., Wilczewska I., Hościło B., (2012), Construction analysis of mini-generator of electric energy using working medium flow as the working environment, Key Engineering Materials, 490, 45–53.10.4028/www.scientific.net/KEM.490.45Search in Google Scholar

9. łazarz B. (2001), Identified dynamic model of the gearbox as the basis for design (in Polish), Wydawnictwo i Zakład Poligrafii Instytutu Technologii Eksploatacji, Katowice-Radom.Search in Google Scholar

10. łazarz B., Peruń G. (2012), Influence of construction factors on the vibrational activity of the gearing, Transport Problems, 7(2), 95–102.Search in Google Scholar

11. Li H., Le M.D, Gong Z.M, Lin W. (2009), Motion profile design to reduce redidual vibration of high-speed positioning stages, IEEE/ASME Transactions on Mechatronics, 14(2), 264–269.10.1109/TMECH.2008.2012160Search in Google Scholar

12. Liang X., Zuo M.J., Feng Z. (2018), Dynamic modeling of gearbox faults: A review, Mechanical Systems and Signal Processing, 98, 852–876.10.1016/j.ymssp.2017.05.024Search in Google Scholar

13. Madej H. (2003), Minimization of vibroacoustic activity of gearboxes hausings (in Polish), Wydawnictwo i Zakład Poligrafii Instytutu Technologii Eksploatacji, Katowice-Radom.Search in Google Scholar

14. Müller L. (1996), Gearboxes – design (in Polish), Wydawnictwa Naukowo-Techniczne, Warszawa.Search in Google Scholar

15. Peng Y., Zhao N., Qiu P., Zhang M., Li W., Zhou R. (2018), An efficient model of load distribution for helical gears with modification and misalignment, Mechanism and Machine Theory, 121, 151–168.10.1016/j.mechmachtheory.2017.10.019Search in Google Scholar

16. Razpotnik M., Bischof T., Boltežar M. (2015), The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes, Journal of Sound and Vibration, 351, 221–235.10.1016/j.jsv.2015.04.021Search in Google Scholar

17. Sawalhi N., Randall R.B. (2014), Gear parameter identification in a windturbine gearbox using vibration signals, Mechanical Systems and Signal Processing, 42, 368–376.10.1016/j.ymssp.2013.08.017Search in Google Scholar

18. Shan J., Liu H.T., Sun D. (2005), Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF), Mechatronics, 15 (4), 487–503.10.1016/j.mechatronics.2004.10.003Search in Google Scholar

19. Shen A., Randall R.B. (2008), Optimal rib stiffening for noise reduction of constant speed gearboxes, 15th International Congress on Sound and Vibration, Korea, Daejeon, 2008.Search in Google Scholar

20. Strassberger M., Waller H. (2000), Active noise reduction by structural control using piezo-electric actuators, Mechatronics, 10(8), 851–868.10.1016/S0957-4158(99)00096-3Search in Google Scholar

21. Wang T., Chu F. Han Q., Kong Y. (2017), Compound faults detection in gearbox via ameshing resonance, Journal of Sound and Vibration, 392, 367–381.10.1016/j.jsv.2016.12.041Search in Google Scholar

22. Wieczorek A. (2010), The role of lubrication in reducing noise associated with the operation of gearboxes (in Polish), Mechanizacja i Automatyzacja Górnictwa, 478 (12), 34–39.Search in Google Scholar

23. Wieczorek A., Kruk R. (2016), Minimization of vibroacoustic effects as a criterion for operation of gear transmissions in accordance with sustainable development principles, Management Systems in Production Engineering, 12 (1), 12–19.10.2478/mspe-02-01-2016Search in Google Scholar

24. Wilk A., Łazarz B., Madej H. (2009), Vibroactivity of gear transmissions. The influence of constructional features and wear of elements on the vibroactivity of drive systems with gear transmissions (in Polish), Wydawnictwo Naukowe Instytut Technlogii Eksploatacji, Katowice-Radom.Search in Google Scholar

25. Wojnar G. (2010), Minimization of dynamic forces in gear meshing by selection of the flexible couplings parameters, Journal of Kones. Powertrain and Transport, 17 (3), 497–504.Search in Google Scholar

26. Wojnar G., Homik W. (2015), Reduction of the amplitudes of selected components of the frequency spectrum of momentary velocity of the crankshaft of the internal combustion engine piston through the use of torsional vibration dampers, JVE International Conference, Katowice, Poland, October 14-15th, Vibroengineering Procedia 1, 6, 83–87.Search in Google Scholar

27. Zhou L., Duan F., Corsar M. Elasha F., Mba D. (2017), A study on helicopter main gearbox planetary bearing fault diagnosis, Applied Acoustics, 127, 213-221.Search in Google Scholar

28. Žuľová L., Grega R., Krajňák J., Fedorko G., Molnár V. (2017), Optimization of noisiness of mechanical system by using a pneumatic tuner during a failure of piston machine, Engineering Failure Analysis, 79, 845–851.10.1016/j.engfailanal.2017.05.044Search in Google Scholar