Cite

Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed AF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021;142:112021. doi: 10.1016/j.biopha.2021.112021 Singh D Gupta S Verma I Morsy MA Nair AB Ahmed AF Hidden pharmacological activities of valproic acid: A new insight Biomed Pharmacother 2021142112021 10.1016/j.biopha.2021.11202134463268Open DOISearch in Google Scholar

Pitt B, Sutton NR, Wang Z, Goonewardena SN, Holinstat M. Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19. Eur J Pharmacol 2021;898:173988. doi: 10.1016/j.ejphar.2021.173988 Pitt B Sutton NR Wang Z Goonewardena SN Holinstat M Potential repurposing of the HDAC inhibitor valproic acid for patients with COVID-19 Eur J Pharmacol 2021898173988 10.1016/j.ejphar.2021.173988792386833667455Open DOISearch in Google Scholar

Đikić D, Jutrić D, Dominko K. The dual nature of the antiepileptic drug valproic acid, with possible beneficial effects in Alzheimer’s disease. SEEMEDJ 2017;1:74–89. doi: 10.26332/seemedj.v1i1.26 Đikić D Jutrić D Dominko K The dual nature of the antiepileptic drug valproic acid, with possible beneficial effects in Alzheimer’s disease SEEMEDJ 2017174 89 10.26332/seemedj.v1i1.26Open DOISearch in Google Scholar

NCBI. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet] [displayed 31 July 2020]. Available at https://www.ncbi.nlm.nih.gov/books/NBK548284/ LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet] [displayed 31 July 2020 Available at https://www.ncbi.nlm.nih.gov/books/NBK548284/Search in Google Scholar

Chaudhary S, Ganjoo P, Raiusddin S, Parvez S. Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid. Protoplasma 2015;252:209–17. doi: 10.1007/s00709-014-0670-8 Chaudhary S Ganjoo P Raiusddin S Parvez S Nephroprotective activities of quercetin with potential relevance to oxidative stress induced by valproic acid Protoplasma 2015252209 17 10.1007/s00709-014-0670-825000991Open DOISearch in Google Scholar

Celik E, Tunali S, Gezginci-Oktayoglu S, Bolkent S, Can A, Yanardag R. Vitamin U prevents valproic acid-induced liver injury through supporting enzymatic antioxidant system and increasing hepatocyte proliferation triggered by inflammation and apoptosis. Toxicol Mech Methods 2021;31:600–8. doi: 10.1080/15376516.2021.1943089 Celik E Tunali S Gezginci-Oktayoglu S Bolkent S Can A Yanardag R Vitamin U prevents valproic acid-induced liver injury through supporting enzymatic antioxidant system and increasing hepatocyte proliferation triggered by inflammation and apoptosis Toxicol Mech Methods 202131600 8 10.1080/15376516.2021.194308934420476Open DOISearch in Google Scholar

Salimi A, Alyan N, Akbari N, Jamali Z, Pourahmad J. Selenium and L-carnitine protects from valproic acid-Induced oxidative stress and mitochondrial damages in rat cortical neurons. Drug Chem Toxicol 2020;1–8. [Online ahead of print] doi: 10.1080/01480545.2020.1810259 Salimi A Alyan N Akbari N Jamali Z Pourahmad J Selenium and L-carnitine protects from valproic acid-Induced oxidative stress and mitochondrial damages in rat cortical neurons Drug Chem Toxicol 2020 1 8 [Online ahead of print] 10.1080/01480545.2020.181025932885679Open DOISearch in Google Scholar

Shirani K, Yousefsani BS, Shirani M, Karimi G. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review. Phytother Res 2020;34:1734–44. doi: 10.1002/ptr.6641 Shirani K Yousefsani BS Shirani M Karimi G Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review Phytother Res 2020341734 44 10.1002/ptr.664132067280Open DOISearch in Google Scholar

Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, Tanriverdi LH, Parlakpinar H. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell 2021;72:101526. doi: 10.1016/j.tice.2021.101526 Koroglu OF Gunata M Vardi N Yildiz A Ates B Colak C Tanriverdi LH Parlakpinar H Protective effects of naringin on valproic acid-induced hepatotoxicity in rats Tissue Cell 202172101526 10.1016/j.tice.2021.10152633756270Open DOISearch in Google Scholar

Zhang X, Zhang Y, Gao W, Guo Z, Wang K, Liu S, Duan Z, Chen Y. Naringin improves lipid metabolism in a tissue-engineered liver model of NAFLD and the underlying mechanisms. Life Sci 2021;277:119487. doi: 10.1016/j.lfs.2021.119487 Zhang X Zhang Y Gao W Guo Z Wang K Liu S Duan Z Chen Y Naringin improves lipid metabolism in a tissue-engineered liver model of NAFLD and the underlying mechanisms Life Sci 2021277119487 10.1016/j.lfs.2021.11948733862107Open DOISearch in Google Scholar

Syed AA, Reza MI, Shafiq M, Kumariya S, Singh P, Husain A, Hanif K, Gayen JR. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis. Life Sci 2020;257:118118. doi: 10.1016/j.lfs.2020.118118 Syed AA Reza MI Shafiq M Kumariya S Singh P Husain A Hanif K Gayen JR Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis Life Sci 2020257118118 10.1016/j.lfs.2020.11811832702445Open DOISearch in Google Scholar

Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National Academies Press; 2011. Committee for the Update of the Guide for the Care and Use of Laboratory Animals Guide for the Care and Use of Laboratory Animals. 8th ed Washington (DC) National Academies Press; 2011Search in Google Scholar

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502. doi: 10.1093/clinchem/18.6.499 Friedewald WT Levy RI Fredrickson DS Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin Chem 197218499 502 10.1093/clinchem/18.6.499Open DOISearch in Google Scholar

Oršolić N, Landeka Jurčević I, Đikić D, Rogić D, Odeh D, Balta V, Perak Junaković E, Terzić S, Jutrić D. Effect of propolis on diet-induced hyperlipidemia and atherogenic indices in mice. Antioxidants (Basel) 201;8:156. doi: 10.3390/antiox8060156 Oršolić N Landeka Jurčević I Đikić D Rogić D Odeh D Balta V Perak Junaković E Terzić S Jutrić D Effect of propolis on diet-induced hyperlipidemia and atherogenic indices in mice Antioxidants (Basel) 2018156 10.3390/antiox8060156Open DOISearch in Google Scholar

Đikić D, Landeka I, Knežević F, Mojsović-Ćuić A, Benković V, Horvat-Knežević A, Lončar G, Teparić R, Rogić D. Carbendazim impends hepatic necrosis when combined with imazalil or cypermethrin. Basic C l in Ph a rm a co l To x i co l 2 0 1 2 ; 1 1 0 : 4 3 3 – 4 0 . do i : 10.1111/j.1742-7843.2011.00831.x Đikić D Landeka I Knežević F Mojsović-Ćuić A Benković V Horvat-Knežević A Lončar G Teparić R Rogić D Carbendazim impends hepatic necrosis when combined with imazalil or cypermethrin Basic Cl in Pharmacol Toxico l 2 0 1 2 ; 1 1 0 : 4 3 3 – 4 0 10.1111/j.1742-7843.2011.00831.x10.1111/j.1742-7843.2011.00831.xSearch in Google Scholar

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75. doi: 10.1016/S0021-9258(19)52451-6 Lowry OH Rosebrough NJ Farr AL Randall RJ Protein measurement with the Folin phenol reagent J Biol Chem 1951193265 75 10.1016/S0021-9258(19)52451-6Open DOISearch in Google Scholar

Landeka Jurčević I, Dora M, Guberović I, Petras M, Rimac S, Brnčić, Đikić D. Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia. Food Technol Biotechnol 2017;55:109–16. doi: 10.17113/ftb.55.01.17.4894 Landeka Jurčević I Dora M Guberović I Petras M Rimac S Brnčić Đikić D Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia Food Technol Biotechnol 201755109 16 10.17113/ftb.55.01.17.4894543437328559739Open DOISearch in Google Scholar

Nagababu E, Rifkind JM, Boindala S, Nakka L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol 2010;610:165–80. doi: 10.1007/978-1-60327-029-8_10 Nagababu E Rifkind JM Boindala S Nakka L Assessment of antioxidant activity of eugenol in vitro and in vivo Methods Mol Biol 2010610165 80 10.1007/978-1-60327-029-8_10320233520013178Open DOISearch in Google Scholar

Mu H, Zhou Q, Yang R, Zeng J, Li X, Zhang R, Tang W, Li H, Wang S, Shen T, Huang X, Dou L, Dong J. Naringin attenuates high fat diet induced non-alcoholic fatty liver disease and gut bacterial dysbiosis in mice. Front Microbiol 2020;11:585066. doi: 10.3389/fmicb.2020.585066 Mu H Zhou Q Yang R Zeng J Li X Zhang R Tang W Li H Wang S Shen T Huang X Dou L Dong J Naringin attenuates high fat diet induced non-alcoholic fatty liver disease and gut bacterial dysbiosis in mice Front Microbiol 202011585066 10.3389/fmicb.2020.585066769132433281780Open DOISearch in Google Scholar

Bellringer ME, Rahman K, Coleman R. Sodium valproate inhibits the movement of secretory vesicles in rat hepatocytes. Biochem J 1988;249:513–9. doi: 10.1042/bj2490513 Bellringer ME Rahman K Coleman R Sodium valproate inhibits the movement of secretory vesicles in rat hepatocytes Biochem J 1988249513 9 10.1042/bj249051311487323124828Open DOISearch in Google Scholar

Grünig D, Szabo L, Marbet M, Krähenbühl S. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms. Biochem Pharmacol 2020;177:113860. doi: 10.1016/j.bcp.2020.113860 Grünig D Szabo L Marbet M Krähenbühl S Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms Biochem Pharmacol 2020177113860 10.1016/j.bcp.2020.11386032165129Open DOISearch in Google Scholar

Lee MH, Hong I, Kim M, Lee BH, Kim JH, Kang KS, Kim HL, Yoon BI, Chung H, Kong G, Lee MO. Gene expression profiles of murine fatty liver induced by the administration of valproic acid. Toxicol Appl Pharmacol 2007;220:45–59. doi: 10.1016/j.taap.2006.12.016 Lee MH Hong I Kim M Lee BH Kim JH Kang KS Kim HL Yoon BI Chung H Kong G Lee MO Gene expression profiles of murine fatty liver induced by the administration of valproic acid Toxicol Appl Pharmacol 200722045 59 10.1016/j.taap.2006.12.01617292431Open DOISearch in Google Scholar

Ma L, Wang Y, Chen X, Zhao L, Guo Y. Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro. Toxicology 2020;445:152585. doi: 10.1016/j.tox.2020.152585 Ma L Wang Y Chen X Zhao L Guo Y Involvement of CYP2E1-ROS-CD36/DGAT2 axis in the pathogenesis of VPA-induced hepatic steatosis in vivo and in vitro Toxicology 2020445152585 10.1016/j.tox.2020.15258533007364Open DOISearch in Google Scholar

Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, Yu W, Zhao Z, Huang M, Jin J. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol 2017;324:12–25. doi: 10.1016/j.taap.2017.03.022 Bai X Hong W Cai P Chen Y Xu C Cao D Yu W Zhao Z Huang M Jin J Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis Toxicol Appl Pharmacol 201732412 25 10.1016/j.taap.2017.03.02228366540Open DOISearch in Google Scholar

Aires CCP, Ijlst L, Stet F, Prip-Buus C, de Almeida IT, Duran M, Wanders RJ, Silva MF. Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis. Biochem Pharmacol 2010;79:792–9. doi: 10.1016/j.bcp.2009.10.011 Aires CCP Ijlst L Stet F Prip-Buus C de Almeida IT Duran M Wanders RJ Silva MF Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis Biochem Pharmacol 201079792 9 10.1016/j.bcp.2009.10.01119854160Open DOISearch in Google Scholar

Kim HJ, Oh GT, Park YB, Lee MK, Seo HJ, Choi MS. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci 2004;74:1621–34. doi: 10.1016/j.lfs.2003.08.026 Kim HJ Oh GT Park YB Lee MK Seo HJ Choi MS Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition Life Sci 2004741621 34 10.1016/j.lfs.2003.08.02614738906Open DOISearch in Google Scholar

Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 2006;30:145–51. doi: 10.1152/advan.00052.2006 Liang H Ward WF PGC-1alpha: a key regulator of energy metabolism Adv Physiol Educ 200630145 51 10.1152/advan.00052.200617108241Open DOISearch in Google Scholar

van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res 2004;21:1531–8. doi: 10.1023/b:pham.0000041444.06122.8d van Raalte DH Li M Pritchard PH Wasan KM Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future Pharm Res 2004211531 8 10.1023/b:pham.0000041444.06122.8dOpen DOISearch in Google Scholar

Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα. Int J Mol Sci 2021;22:8969. doi: 10.3390/ijms22168969 Tahri-Joutey M Andreoletti P Surapureddi S Nasser B Cherkaoui-Malki M Latruffe N Mechanisms mediating the regulation of peroxisomal fatty acid beta-oxidation by PPARα Int J Mol Sci 2021228969 10.3390/ijms22168969839656134445672Open DOISearch in Google Scholar

Lira VA, Benton CR, Yan Z, Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010;299:E145–61. doi: 10.1152/ajpendo.00755.2009 Lira VA Benton CR Yan Z Bonen A PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity Am J Physiol Endocrinol Metab 2010299E145 61 10.1152/ajpendo.00755.2009292851320371735Open DOISearch in Google Scholar

Vluggens A, Andreoletti P, Viswakarma N, Jia Y, Matsumoto K, Kulik W, Khan M, Huang J, Guo D, Yu S, Sarkar J, Singh I, Rao MS, Wanders RJ, Reddy JK, Cherkaoui-Malki M. Reversal of mouse Acyl-CoA oxidase 1 (ACOX1) null phenotype by human ACOX1b isoform. Lab Invest 2010;90:696–708. doi: 10.1038/labinvest.2010.46 Vluggens A Andreoletti P Viswakarma N Jia Y Matsumoto K Kulik W Khan M Huang J Guo D Yu S Sarkar J Singh I Rao MS Wanders RJ Reddy JK Cherkaoui-Malki M Reversal of mouse Acyl-CoA oxidase 1 (ACOX1) null phenotype by human ACOX1b isoform Lab Invest 201090696 708 10.1038/labinvest.2010.4620195242Open DOISearch in Google Scholar

Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 2001;21:193–230. doi: 10.1146/annurev.nutr.21.1.193 Reddy JK Hashimoto T Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system Annu Rev Nutr 200121193 230 10.1146/annurev.nutr.21.1.19311375435Open DOISearch in Google Scholar

Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998;273:5678–84. doi: 10.1074/jbc.273.10.5678 Aoyama T Peters JM Iritani N Nakajima T Furihata K Hashimoto T Gonzalez FJ Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha) J Biol Chem 19982735678 84 10.1074/jbc.273.10.5678Open DOISearch in Google Scholar

Vamecq J, Vallee L, Fontaine M, Lambert D, Poupaert J, Nuyts JP. CoA esters of valproic acid and related metabolites are oxidized in peroxisomes through a pathway distinct from peroxisomal fatty and bile acyl-CoA beta-oxidation. FEBS Lett 1993;322:95–100. doi: 10.1016/0014-5793(93)81545-b Vamecq J Vallee L Fontaine M Lambert D Poupaert J Nuyts JP CoA esters of valproic acid and related metabolites are oxidized in peroxisomes through a pathway distinct from peroxisomal fatty and bile acyl-CoA beta-oxidation FEBS Lett 199332295 100 10.1016/0014-5793(93)81545-bOpen DOISearch in Google Scholar

Ponchaut S, Draye JP, Veitch K, Van Hoof F. Influence of chronic administration of valproate on ultrastructure and enzyme content of peroxisomes in rat liver and kidney. Oxidation of valproate by liver peroxisomes. Biochem Pharmacol 1991;41:1419–28. doi: 10.1016/0006-2952(91)90557-L Ponchaut S Draye JP Veitch K Van Hoof F Influence of chronic administration of valproate on ultrastructure and enzyme content of peroxisomes in rat liver and kidney Oxidation of valproate by liver peroxisomes. Biochem Pharmacol 1991411419 28 10.1016/0006-2952(91)90557-LOpen DOISearch in Google Scholar

Van den Branden C, Roels F. Peroxisomal beta-oxidation and sodium valproate. Biochem Pharmacol 1985;34:2147–9. doi: 10.1016/00062952(85)90409-5 Van den Branden C Roels F Peroxisomal beta-oxidation and sodium valproate Biochem Pharmacol 1985342147 9 10.1016/00062952(85)90409-5Open DOISearch in Google Scholar

Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci 2020;21:2061. doi: 10.3390/ijms21062061 Wang Y Nakajima T Gonzalez FJ Tanaka N PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice Int J Mol Sci 2020212061 10.3390/ijms21062061Open DOISearch in Google Scholar

McMullen PD, Bhattacharya S, Woods CG, Sun B, Yarborough K, Ross SM, Miller ME, McBride MT, LeCluyse EL, Clewell RA, Andersen ME. A map of the PPARα transcription regulatory network for primary human hepatocytes. Chem Biol Interact 2014;209:14–24. doi: 10.1016/j.cbi.2013.11.006 McMullen PD Bhattacharya S Woods CG Sun B Yarborough K Ross SM Miller ME McBride MT LeCluyse EL Clewell RA Andersen ME A map of the PPARα transcription regulatory network for primary human hepatocytes Chem Biol Interact 201420914 24 10.1016/j.cbi.2013.11.006Open DOISearch in Google Scholar

Varanasi U, Chu R, Huang Q, Castellon R, Yeldandi AV, Reddy JK. Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. J Biol Chem 1996;271:2147–55. doi: 10.1074/jbc.271.4.2147 Varanasi U Chu R Huang Q Castellon R Yeldandi AV Reddy JK Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene J Biol Chem 19962712147 55 10.1074/jbc.271.4.2147Open DOISearch in Google Scholar

Yaacob NS, Norazmi MN, Gibson GG, Kass GE. The transcription of the peroxisome proliferator-activated receptor alpha gene is regulated by protein kinase C. Toxicol Lett 2001;125:133–41. doi: 10.1016/s0378-4274(01)00433-7 Yaacob NS Norazmi MN Gibson GG Kass GE The transcription of the peroxisome proliferator-activated receptor alpha gene is regulated by protein kinase C Toxicol Lett 2001125133 41 10.1016/s0378-4274(01)00433-7Open DOISearch in Google Scholar

Ke JY, Kliewer KL, Hamad EM, Cole RM, Powell KA, Andridge RR, Straka SR, Yee LD, Belury MA. The flavonoid, naringenin, decreases adipose tissue mass and attenuates ovariectomy-associated metabolic disturbances in mice. Nutr Metab (Lond) 2015;12:1. doi: 10.1186/17437075-12-1 Ke JY Kliewer KL Hamad EM Cole RM Powell KA Andridge RR Straka SR Yee LD Belury MA The flavonoid, naringenin, decreases adipose tissue mass and attenuates ovariectomy-associated metabolic disturbances in mice Nutr Metab (Lond) 2015121 10.1186/17437075-12-1Open DOISearch in Google Scholar

Dayarathne LA, Ranaweera SS, Natraj P, Rajan P, Lee YJ, Han CH. Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes. J Vet Sci 2021;22:e55. doi: 10.4142/jvs.2021.22.e55 Dayarathne LA Ranaweera SS Natraj P Rajan P Lee YJ Han CH Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes J Vet Sci 202122e55 10.4142/jvs.2021.22.e55831879134313040Open DOISearch in Google Scholar

Zeng J, Deng S, Wang Y, Li P, Tang L, Pang Y. Specific inhibition of acyl-CoA oxidase-1 by an acetylenic acid improves hepatic lipid and reactive oxygen species (ROS) metabolism in rats fed a high fat diet. J Biol Chem 2017;292:3800–9. doi: 10.1074/jbc.M116.763532 Zeng J Deng S Wang Y Li P Tang L Pang Y Specific inhibition of acyl-CoA oxidase-1 by an acetylenic acid improves hepatic lipid and reactive oxygen species (ROS) metabolism in rats fed a high fat diet J Biol Chem 20172923800 9 10.1074/jbc.M116.763532Open DOISearch in Google Scholar

Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietilä M, Koivunen P, Hakkola J, Poulton J, Morten KJ, Uusimaa J. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015;331:47–56. doi: 10.1016/j.tox.2015.03.001 Komulainen T Lodge T Hinttala R Bolszak M Pietilä M Koivunen P Hakkola J Poulton J Morten KJ Uusimaa J Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model Toxicology 201533147 56 10.1016/j.tox.2015.03.001Open DOISearch in Google Scholar

Pourahmad J, Eskandari MR, Kaghazi A, Shaki F, Shahraki J, Fard JK. A new approach on valproic acid induced hepatotoxicity: involvement of lysosomal membrane leakiness and cellular proteolysis. Toxicol In Vitro 2012;26:545–51. doi: 10.1016/j.tiv.2012.01.020 Pourahmad J Eskandari MR Kaghazi A Shaki F Shahraki J Fard JK A new approach on valproic acid induced hepatotoxicity: involvement of lysosomal membrane leakiness and cellular proteolysis Toxicol In Vitro 201226545 51 10.1016/j.tiv.2012.01.020Open DOISearch in Google Scholar

Jafarian I, Eskandari MR, Mashayekhi V, Ahadpour M, Hosseini MJ. Toxicity of valproic acid in isolated rat liver mitochondria. Toxicol Mech Methods 2013;23:617–23. doi: 10.3109/15376516.2013.821567 Jafarian I Eskandari MR Mashayekhi V Ahadpour M Hosseini MJ Toxicity of valproic acid in isolated rat liver mitochondria Toxicol Mech Methods 201323617 23 10.3109/15376516.2013.821567Open DOISearch in Google Scholar

Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, Kim HK, Jeong TS, Choi MS. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr 2003;22:561–8. doi: 10.1016/s0261-5614(03)00059-1 Jung UJ Kim HJ Lee JS Lee MK Kim HO Park EJ Kim HK Jeong TS Choi MS Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects Clin Nutr 200322561 8 10.1016/s0261-5614(03)00059-1Open DOISearch in Google Scholar

Demonty I, Lin Y, Zebregs YE, Vermeer MA, van der Knaap HC, Jäkel M, Trautwein EA. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr 2010;140:1615–20. doi: 10.3945/jn.110.124735 Demonty I Lin Y Zebregs YE Vermeer MA van der Knaap HC Jäkel M Trautwein EA The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women J Nutr 20101401615 20 10.3945/jn.110.12473520660284Open DOISearch in Google Scholar

Raffoul-Orozco AK, Ávila-González AE, Rodríguez-Razón CM, García-Cobian TA, Pérez-Guerrero EE, García-Iglesias T, Rubio-Arellano ED. Combination effect naringin and pravastatin in lipid profile and glucose in obese rats. Life Sci 2018;193:87–92. doi: 10.1016/j.lfs.2017.11.044 Raffoul-Orozco AK Ávila-González AE Rodríguez-Razón CM García-Cobian TA Pérez-Guerrero EE García-Iglesias T Rubio-Arellano ED Combination effect naringin and pravastatin in lipid profile and glucose in obese rats Life Sci 201819387 92 10.1016/j.lfs.2017.11.04429197498Open DOISearch in Google Scholar

eISSN:
1848-6312
Idiomas:
Inglés, Slovenian
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Basic Medical Science, other