Acceso abierto

The potential impact of the ketogenic diet on gut microbiota in the context of neurological disorders


Cite

Fasano A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation. Autoimmunity, and Cancer. Physiol Rev. 2011; 91: 151–175. FasanoA Zonulin and its regulation of intestinal barrier function: The biological door to inflammation. Autoimmunity, and Cancer Physiol Rev 2011 91 151 175 10.1152/physrev.00003.200821248165 Search in Google Scholar

Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, Kelly DL, Cascella N, Fasano A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016; 7: 49. FiorentinoM SaponeA SengerS CamhiSS KadzielskiSM BuieTM KellyDL CascellaN FasanoA Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders Mol Autism 2016 7 49 10.1186/s13229-016-0110-z512965127957319 Search in Google Scholar

The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486: 207–214. The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome Nature 2012 486 207 214 10.1038/nature11234356495822699609 Search in Google Scholar

Chin VK, Yong VC, Chong PP, Amin Nordin S, Basir R, Abdullah M. Mycobiome in the gut: A multiperspective review. Mediators Inflamm. 2020; 2020: 9560684. ChinVK YongVC ChongPP Amin NordinS BasirR AbdullahM Mycobiome in the gut: A multiperspective review Mediators Inflamm 2020 2020 9560684 10.1155/2020/9560684716071732322167 Search in Google Scholar

Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018; 26: 563–574. Heintz-BuschartA WilmesP Human gut microbiome: Function matters Trends Microbiol 2018 26 563 574 10.1016/j.tim.2017.11.00229173869 Search in Google Scholar

Freestone PPE, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: How stress influences susceptibility to infection. Trends Microbiol. 2008; 16: 55–64. FreestonePPE SandriniSM HaighRD LyteM Microbial endocrinology: How stress influences susceptibility to infection Trends Microbiol 2008 16 55 64 10.1016/j.tim.2007.11.00518191570 Search in Google Scholar

Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Gut microbiota: The neglected endocrine organ. Mol Endocrinol. 2014; 28: 1221–1238. ClarkeG StillingRM KennedyPJ StantonC CryanJF DinanTG Gut microbiota: The neglected endocrine organ Mol Endocrinol 2014 28 1221 1238 10.1210/me.2014-1108541480324892638 Search in Google Scholar

Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcif Tissue Int. 2018; 102: 433–442. GrosickiGJ FieldingRA LustgartenMS Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis Calcif Tissue Int 2018 102 433 442 10.1007/s00223-017-0345-5585887129058056 Search in Google Scholar

Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas ME. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 2019; 56: 493–500. Abdul RahimMBH ChillouxJ Martinez-GiliL NevesAL MyridakisA GooderhamN DumasME Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles Acta Diabetol 2019 56 493 500 10.1007/s00592-019-01312-x645171930903435 Search in Google Scholar

Mills S, Stanton C, Lane J, Smith G, Ross R. Precision nutrition and the microbiome, Part I: Current state of the science. Nutrients. 2019; 11: 923. MillsS StantonC LaneJ SmithG RossR Precision nutrition and the microbiome, Part I: Current state of the science Nutrients 2019 11 923 10.3390/nu11040923652097631022973 Search in Google Scholar

Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol. 1996; 62: 1589–1592. MillerTL WolinMJ Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora Appl Environ Microbiol 1996 62 1589 1592 10.1128/aem.62.5.1589-1592.19961679328633856 Search in Google Scholar

Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, Eggersdorfer M. The role of the microbiome for human health: From basic science to clinical applications. Eur J Nutr. 2018; 57 (Suppl 1): 1–14. MohajeriMH BrummerRJM RastallRA WeersmaRK HarmsenHJM FaasM EggersdorferM The role of the microbiome for human health: From basic science to clinical applications Eur J Nutr 2018 57 Suppl 1 1 14 10.1007/s00394-018-1703-4596261929748817 Search in Google Scholar

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020; 11: 25. SilvaYP BernardiA FrozzaRL The role of short-chain fatty acids from gut microbiota in gut-brain communication Front Endocrinol 2020 11 25 10.3389/fendo.2020.00025700563132082260 Search in Google Scholar

Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 2016; 167: 114–125. AguirreM EckA KoenenME SavelkoulPHM BuddingAE VenemaK Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model Res Microbiol 2016 167 114 125 10.1016/j.resmic.2015.09.00626499094 Search in Google Scholar

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–563. DavidLA MauriceCF CarmodyRN GootenbergDB ButtonJE WolfeBE LingAV DevlinAS VarmaY FischbachMA Diet rapidly and reproducibly alters the human gut microbiome Nature 2014 505 559 563 10.1038/nature12820395742824336217 Search in Google Scholar

Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007; 33: 547–562. BlachierF MariottiF HuneauJF ToméD Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences Amino Acids 2007 33 547 562 10.1007/s00726-006-0477-917146590 Search in Google Scholar

Diether N, Willing B. Microbial fermentation of dietary protein: An important factor in diet–microbe-host interaction. Microorganisms. 2019; 7: 19. DietherN WillingB Microbial fermentation of dietary protein: An important factor in diet–microbe-host interaction Microorganisms 2019 7 19 10.3390/microorganisms7010019635211830642098 Search in Google Scholar

Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991; 70: 443–459. CummingsJH MacfarlaneGT The control and consequences of bacterial fermentation in the human colon J Appl Bacteriol 1991 70 443 459 10.1111/j.1365-2672.1991.tb02739.x1938669 Search in Google Scholar

Pieper R, Boudry C, Bindelle J, Vahjen W, Zentek J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch Anim Nutr. 2014; 68: 263–280. PieperR BoudryC BindelleJ VahjenW ZentekJ Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets Arch Anim Nutr 2014 68 263 280 10.1080/1745039X.2014.93296224979393 Search in Google Scholar

Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006; 103: 12511–12516. DumasME BartonRH ToyeA CloarecO BlancherC RothwellA FearnsideJ TatoudR BlancV LindonJC Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice Proc Natl Acad Sci USA 2006 103 12511 12516 10.1073/pnas.0601056103156790916895997 Search in Google Scholar

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57–63. WangZ KlipfellE BennettBJ KoethR LevisonBS DugarB FeldsteinAE BrittEB FuX ChungYM Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease Nature 2011 472 57 63 10.1038/nature09922308676221475195 Search in Google Scholar

Kühn T, Rohrmann S, Sookthai D, Johnson T, Katzke V, Kaaks R, von Eckardstein A, Müller D. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med. 2017; 55: 261–268. KühnT RohrmannS SookthaiD JohnsonT KatzkeV KaaksR von EckardsteinA MüllerD Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year Clin Chem Lab Med 2017 55 261 268 10.1515/cclm-2016-037427447240 Search in Google Scholar

Gross P, Massy ZA, Henaut L, Boudot C, Cagnard J, March C, Kamel S, Drueke TB, Six I. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling: Para-cresyl sulfate and vascular dysfunction. J Cell Physiol. 2015; 230: 2927–2935. GrossP MassyZA HenautL BoudotC CagnardJ MarchC KamelS DruekeTB SixI Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling: Para-cresyl sulfate and vascular dysfunction J Cell Physiol 2015 230 2927 2935 10.1002/jcp.2501825899466 Search in Google Scholar

Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, Kuypers D, Evenepoel P, Meijers B. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014; 15: 87. PoesenR ViaeneL VerbekeK AugustijnsP BammensB ClaesK KuypersD EvenepoelP MeijersB Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease BMC Nephrol 2014 15 87 10.1186/1471-2369-15-87406410224912660 Search in Google Scholar

Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009; 101: 1493. BrinkworthGD NoakesM CliftonPM BirdAR Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations Br J Nutr 2009 101 1493 10.1017/S000711450809465819224658 Search in Google Scholar

Patel KP, Luo FJG, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol. 2012; 7: 982–988. PatelKP LuoFJG PlummerNS HostetterTH MeyerTW The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores Clin J Am Soc Nephrol 2012 7 982 988 10.2215/CJN.12491211336231422490877 Search in Google Scholar

Salmean YA, Segal MS, Palii SP, Dahl WJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr. 2015; 25: 316–320. SalmeanYA SegalMS PaliiSP DahlWJ Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients J Ren Nutr 2015 25 316 320 10.1053/j.jrn.2014.09.002464607625446837 Search in Google Scholar

Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. J Agric Food Chem. 2019; 67: 9124–9138. SinghJ MetraniR ShivanagoudraSR JayaprakashaGK PatilBS Review on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds J Agric Food Chem 2019 67 9124 9138 10.1021/acs.jafc.8b0730630969768 Search in Google Scholar

Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016; 4:15. GorvitovskaiaA HolmesSP HuseSM Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle Microbiome 2016 4 15 10.1186/s40168-016-0160-7482885527068581 Search in Google Scholar

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334: 105–108. WuGD ChenJ HoffmannC BittingerK ChenYY KeilbaughSA BewtraM KnightsD WaltersWA KnightR Linking long-term dietary patterns with gut microbial enterotypes Science 2011 334 105 108 10.1126/science.1208344336838221885731 Search in Google Scholar

Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes. 2019; 10: 534. PaoliA MancinL BiancoA ThomasE MotaJF PicciniF Ketogenic diet and microbiota: Friends or enemies? Genes 2019 10 534 10.3390/genes10070534667859231311141 Search in Google Scholar

Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome: Curr Opin Gastroenterol. 2014; 30: 332–338. RidlonJM KangDJ HylemonPB BajajJS Bile acids and the gut microbiome Curr Opin Gastroenterol 2014 30 332 338 10.1097/MOG.0000000000000057421553924625896 Search in Google Scholar

Hidalgo M, Prieto I, Abriouel H, Cobo A, Benomar N, Gálvez A, Martínez-Cañamero M.. Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter. Food Res Int. 2014; 64: 553–559. HidalgoM PrietoI AbriouelH CoboA BenomarN GálvezA Martínez-CañameroM Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter Food Res Int 2014 64 553 559 10.1016/j.foodres.2014.07.03030011688 Search in Google Scholar

de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, de Vogel-van den Bosch J, Kleerebezem M, Müller M, van der Meer R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol-Gastrointest Liver Physiol. 2012; 303: G589–G599. de WitN DerrienM Bosch-VermeulenH OosterinkE KeshtkarS DuvalC de Vogel-van den BoschJ KleerebezemM MüllerM van der MeerR Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine Am J Physiol-Gastrointest Liver Physiol 2012 303 G589 G599 10.1152/ajpgi.00488.201122700822 Search in Google Scholar

Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The Gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018; 173: 1728–1741. OlsonCA VuongHE YanoJM LiangQY NusbaumDJ HsiaoEY The Gut microbiota mediates the anti-seizure effects of the ketogenic diet Cell 2018 173 1728 1741 10.1016/j.cell.2018.04.027600387029804833 Search in Google Scholar

Paoli A, Mancin L, Giacona MC, Bianco A, Caprio M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med. 2020; 18: 104. PaoliA MancinL GiaconaMC BiancoA CaprioM Effects of a ketogenic diet in overweight women with polycystic ovary syndrome J Transl Med 2020 18 104 10.1186/s12967-020-02277-0704552032103756 Search in Google Scholar

Pérez-Guisado J, Muñoz-Serrano A, Alonso-Moraga Á. Spanish ketogenic mediterranean diet: A healthy cardiovascular diet for weight loss. Nutr J. 2008; 7: 30. Pérez-GuisadoJ Muñoz-SerranoA Alonso-MoragaÁ Spanish ketogenic mediterranean diet: A healthy cardiovascular diet for weight loss Nutr J 2008 7 30 10.1186/1475-2891-7-30258662518950537 Search in Google Scholar

Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult Scler Int. 2015; 2015: 681289. StoroniM PlantGT The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis Mult Scler Int 2015 2015 681289 10.1155/2015/681289470972526839705 Search in Google Scholar

Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E, Dahlin M, Prast-Nielsen S. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 2019; 5: 5. LindefeldtM EngA DarbanH BjerknerA ZetterströmCK AllanderT AnderssonB BorensteinE DahlinM Prast-NielsenS The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy NPJ Biofilms Microbiomes 2019 5 5 10.1038/s41522-018-0073-2634453330701077 Search in Google Scholar

Tagliabue A, Ferraris C, Uggeri F, Trentani C, Bertoli S, de Giorgis V, Veggiotti P, Elli M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: A 3-month prospective observational study. Clin Nutr ESPEN. 2017; 17: 33–37. TagliabueA FerrarisC UggeriF TrentaniC BertoliS de GiorgisV VeggiottiP ElliM Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: A 3-month prospective observational study Clin Nutr ESPEN 2017 17 33 37 10.1016/j.clnesp.2016.11.00328361745 Search in Google Scholar

Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, Murphy MP, Sokola BS, Bauer B, Hartz AMS, Lin A-L. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018; 8: 6670. MaD WangAC ParikhI GreenSJ HoffmanJD ChlipalaG MurphyMP SokolaBS BauerB HartzAMS LinA-L Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice Sci Rep 2018 8 6670 10.1038/s41598-018-25190-5592327029703936 Search in Google Scholar

Lee RWY, Corley MJ, Pang A, Arakaki G, Abbott L, Nishimoto M, Miyamoto R, Lee E, Yamamoto S, Maunakea AK, et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav. 2018; 188: 205–211. LeeRWY CorleyMJ PangA ArakakiG AbbottL NishimotoM MiyamotoR LeeE YamamotoS MaunakeaAK A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder Physiol Behav 2018 188 205 211 10.1016/j.physbeh.2018.02.006586303929421589 Search in Google Scholar

Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism. 2016; 7: 37. NewellC BomhofMR ReimerRA HittelDS RhoJM ShearerJ Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder Mol Autism 2016 7 37 10.1186/s13229-016-0099-3500954127594980 Search in Google Scholar

Swidsinski A, Dörffel Y, Loening-Baucke V, Gille C, Göktas Ö, Reißhauer A, Neuhaus J, Weylandt KH, Guschin A, Bock M. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017; 8: 1141. SwidsinskiA DörffelY Loening-BauckeV GilleC GöktasÖ ReißhauerA NeuhausJ WeylandtKH GuschinA BockM Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet Front Microbiol 2017 8 1141 10.3389/fmicb.2017.01141548840228702003 Search in Google Scholar

Lee JE, Titcomb TJ, Bisht B, Rubenstein LM, Louison R, Wahls TL. A Modified MCT-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot study. J Am Coll Nutr. 2021; 40: 13–25. LeeJE TitcombTJ BishtB RubensteinLM LouisonR WahlsTL A Modified MCT-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot study J Am Coll Nutr 2021 40 13 25 10.1080/07315724.2020.173498832213121 Search in Google Scholar

Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018; 145: 163–168. ZhangY ZhouS ZhouY YuL ZhangL WangY Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet Epilepsy Res 2018 145 163 168 10.1016/j.eplepsyres.2018.06.01530007242 Search in Google Scholar

Murtaza N, Burke L, Vlahovich N, Charlesson B., O’ Neill H., Ross ML, Campbell KL, Krause L, Morrison M. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019; 11: 261. MurtazaN BurkeL VlahovichN CharlessonB. O’ NeillH. RossML CampbellKL KrauseL MorrisonM The effects of dietary pattern during intensified training on stool microbiota of elite race walkers Nutrients 2019 11 261 10.3390/nu11020261641308430682843 Search in Google Scholar

eISSN:
1732-2693
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology