This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fasano A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation. Autoimmunity, and Cancer. Physiol Rev. 2011; 91: 151–175.FasanoAZonulin and its regulation of intestinal barrier function: The biological door to inflammation. Autoimmunity, and CancerPhysiol Rev20119115117510.1152/physrev.00003.200821248165Search in Google Scholar
Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, Kelly DL, Cascella N, Fasano A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016; 7: 49.FiorentinoMSaponeASengerSCamhiSSKadzielskiSMBuieTMKellyDLCascellaNFasanoABlood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disordersMol Autism201674910.1186/s13229-016-0110-z512965127957319Search in Google Scholar
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486: 207–214.The Human Microbiome Project ConsortiumStructure, function and diversity of the healthy human microbiomeNature201248620721410.1038/nature11234356495822699609Search in Google Scholar
Chin VK, Yong VC, Chong PP, Amin Nordin S, Basir R, Abdullah M. Mycobiome in the gut: A multiperspective review. Mediators Inflamm. 2020; 2020: 9560684.ChinVKYongVCChongPPAmin NordinSBasirRAbdullahMMycobiome in the gut: A multiperspective reviewMediators Inflamm20202020956068410.1155/2020/9560684716071732322167Search in Google Scholar
Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol. 2018; 26: 563–574.Heintz-BuschartAWilmesPHuman gut microbiome: Function mattersTrends Microbiol20182656357410.1016/j.tim.2017.11.00229173869Search in Google Scholar
Freestone PPE, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: How stress influences susceptibility to infection. Trends Microbiol. 2008; 16: 55–64.FreestonePPESandriniSMHaighRDLyteMMicrobial endocrinology: How stress influences susceptibility to infectionTrends Microbiol200816556410.1016/j.tim.2007.11.00518191570Search in Google Scholar
Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Gut microbiota: The neglected endocrine organ. Mol Endocrinol. 2014; 28: 1221–1238.ClarkeGStillingRMKennedyPJStantonCCryanJFDinanTGGut microbiota: The neglected endocrine organMol Endocrinol2014281221123810.1210/me.2014-1108541480324892638Search in Google Scholar
Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcif Tissue Int. 2018; 102: 433–442.GrosickiGJFieldingRALustgartenMSGut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axisCalcif Tissue Int201810243344210.1007/s00223-017-0345-5585887129058056Search in Google Scholar
Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas ME. Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol. 2019; 56: 493–500.Abdul RahimMBHChillouxJMartinez-GiliLNevesALMyridakisAGooderhamNDumasMEDiet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indolesActa Diabetol20195649350010.1007/s00592-019-01312-x645171930903435Search in Google Scholar
Mills S, Stanton C, Lane J, Smith G, Ross R. Precision nutrition and the microbiome, Part I: Current state of the science. Nutrients. 2019; 11: 923.MillsSStantonCLaneJSmithGRossRPrecision nutrition and the microbiome, Part I: Current state of the scienceNutrients20191192310.3390/nu11040923652097631022973Search in Google Scholar
Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol. 1996; 62: 1589–1592.MillerTLWolinMJPathways of acetate, propionate, and butyrate formation by the human fecal microbial floraAppl Environ Microbiol1996621589159210.1128/aem.62.5.1589-1592.19961679328633856Search in Google Scholar
Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M, Eggersdorfer M. The role of the microbiome for human health: From basic science to clinical applications. Eur J Nutr. 2018; 57 (Suppl 1): 1–14.MohajeriMHBrummerRJMRastallRAWeersmaRKHarmsenHJMFaasMEggersdorferMThe role of the microbiome for human health: From basic science to clinical applicationsEur J Nutr201857Suppl 111410.1007/s00394-018-1703-4596261929748817Search in Google Scholar
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020; 11: 25.SilvaYPBernardiAFrozzaRLThe role of short-chain fatty acids from gut microbiota in gut-brain communicationFront Endocrinol2020112510.3389/fendo.2020.00025700563132082260Search in Google Scholar
Aguirre M, Eck A, Koenen ME, Savelkoul PHM, Budding AE, Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res Microbiol. 2016; 167: 114–125.AguirreMEckAKoenenMESavelkoulPHMBuddingAEVenemaKDiet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut modelRes Microbiol201616711412510.1016/j.resmic.2015.09.00626499094Search in Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–563.DavidLAMauriceCFCarmodyRNGootenbergDBButtonJEWolfeBELingAVDevlinASVarmaYFischbachMADiet rapidly and reproducibly alters the human gut microbiomeNature201450555956310.1038/nature12820395742824336217Search in Google Scholar
Blachier F, Mariotti F, Huneau JF, Tomé D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007; 33: 547–562.BlachierFMariottiFHuneauJFToméDEffects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequencesAmino Acids20073354756210.1007/s00726-006-0477-917146590Search in Google Scholar
Diether N, Willing B. Microbial fermentation of dietary protein: An important factor in diet–microbe-host interaction. Microorganisms. 2019; 7: 19.DietherNWillingBMicrobial fermentation of dietary protein: An important factor in diet–microbe-host interactionMicroorganisms201971910.3390/microorganisms7010019635211830642098Search in Google Scholar
Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991; 70: 443–459.CummingsJHMacfarlaneGTThe control and consequences of bacterial fermentation in the human colonJ Appl Bacteriol19917044345910.1111/j.1365-2672.1991.tb02739.x1938669Search in Google Scholar
Pieper R, Boudry C, Bindelle J, Vahjen W, Zentek J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch Anim Nutr. 2014; 68: 263–280.PieperRBoudryCBindelleJVahjenWZentekJInteraction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned pigletsArch Anim Nutr20146826328010.1080/1745039X.2014.93296224979393Search in Google Scholar
Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA. 2006; 103: 12511–12516.DumasMEBartonRHToyeACloarecOBlancherCRothwellAFearnsideJTatoudRBlancVLindonJCMetabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant miceProc Natl Acad Sci USA2006103125111251610.1073/pnas.0601056103156790916895997Search in Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57–63.WangZKlipfellEBennettBJKoethRLevisonBSDugarBFeldsteinAEBrittEBFuXChungYMGut flora metabolism of phosphatidylcholine promotes cardiovascular diseaseNature2011472576310.1038/nature09922308676221475195Search in Google Scholar
Kühn T, Rohrmann S, Sookthai D, Johnson T, Katzke V, Kaaks R, von Eckardstein A, Müller D. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med. 2017; 55: 261–268.KühnTRohrmannSSookthaiDJohnsonTKatzkeVKaaksRvon EckardsteinAMüllerDIntra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 yearClin Chem Lab Med20175526126810.1515/cclm-2016-037427447240Search in Google Scholar
Gross P, Massy ZA, Henaut L, Boudot C, Cagnard J, March C, Kamel S, Drueke TB, Six I. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling: Para-cresyl sulfate and vascular dysfunction. J Cell Physiol. 2015; 230: 2927–2935.GrossPMassyZAHenautLBoudotCCagnardJMarchCKamelSDruekeTBSixIPara-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling: Para-cresyl sulfate and vascular dysfunctionJ Cell Physiol20152302927293510.1002/jcp.2501825899466Search in Google Scholar
Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, Kuypers D, Evenepoel P, Meijers B. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014; 15: 87.PoesenRViaeneLVerbekeKAugustijnsPBammensBClaesKKuypersDEvenepoelPMeijersBCardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney diseaseBMC Nephrol2014158710.1186/1471-2369-15-87406410224912660Search in Google Scholar
Brinkworth GD, Noakes M, Clifton PM, Bird AR. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br J Nutr. 2009; 101: 1493.BrinkworthGDNoakesMCliftonPMBirdARComparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populationsBr J Nutr2009101149310.1017/S000711450809465819224658Search in Google Scholar
Patel KP, Luo FJG, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol. 2012; 7: 982–988.PatelKPLuoFJGPlummerNSHostetterTHMeyerTWThe production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivoresClin J Am Soc Nephrol2012798298810.2215/CJN.12491211336231422490877Search in Google Scholar
Salmean YA, Segal MS, Palii SP, Dahl WJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr. 2015; 25: 316–320.SalmeanYASegalMSPaliiSPDahlWJFiber supplementation lowers plasma p-cresol in chronic kidney disease patientsJ Ren Nutr20152531632010.1053/j.jrn.2014.09.002464607625446837Search in Google Scholar
Singh J, Metrani R, Shivanagoudra SR, Jayaprakasha GK, Patil BS. Review on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. J Agric Food Chem. 2019; 67: 9124–9138.SinghJMetraniRShivanagoudraSRJayaprakashaGKPatilBSReview on bile acids: Effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compoundsJ Agric Food Chem2019679124913810.1021/acs.jafc.8b0730630969768Search in Google Scholar
Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016; 4:15.GorvitovskaiaAHolmesSPHuseSMInterpreting Prevotella and Bacteroides as biomarkers of diet and lifestyleMicrobiome201641510.1186/s40168-016-0160-7482885527068581Search in Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334: 105–108.WuGDChenJHoffmannCBittingerKChenYYKeilbaughSABewtraMKnightsDWaltersWAKnightRLinking long-term dietary patterns with gut microbial enterotypesScience201133410510810.1126/science.1208344336838221885731Search in Google Scholar
Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes. 2019; 10: 534.PaoliAMancinLBiancoAThomasEMotaJFPicciniFKetogenic diet and microbiota: Friends or enemies?Genes20191053410.3390/genes10070534667859231311141Search in Google Scholar
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome: Curr Opin Gastroenterol. 2014; 30: 332–338.RidlonJMKangDJHylemonPBBajajJSBile acids and the gut microbiomeCurr Opin Gastroenterol20143033233810.1097/MOG.0000000000000057421553924625896Search in Google Scholar
Hidalgo M, Prieto I, Abriouel H, Cobo A, Benomar N, Gálvez A, Martínez-Cañamero M.. Effect of virgin and refined olive oil consumption on gut microbiota. Comparison to butter. Food Res Int. 2014; 64: 553–559.HidalgoMPrietoIAbriouelHCoboABenomarNGálvezAMartínez-CañameroMEffect of virgin and refined olive oil consumption on gut microbiota. Comparison to butterFood Res Int20146455355910.1016/j.foodres.2014.07.03030011688Search in Google Scholar
de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, de Vogel-van den Bosch J, Kleerebezem M, Müller M, van der Meer R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol-Gastrointest Liver Physiol. 2012; 303: G589–G599.de WitNDerrienMBosch-VermeulenHOosterinkEKeshtkarSDuvalCde Vogel-van den BoschJKleerebezemMMüllerMvan der MeerRSaturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestineAm J Physiol-Gastrointest Liver Physiol2012303G589G59910.1152/ajpgi.00488.201122700822Search in Google Scholar
Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The Gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018; 173: 1728–1741.OlsonCAVuongHEYanoJMLiangQYNusbaumDJHsiaoEYThe Gut microbiota mediates the anti-seizure effects of the ketogenic dietCell20181731728174110.1016/j.cell.2018.04.027600387029804833Search in Google Scholar
Paoli A, Mancin L, Giacona MC, Bianco A, Caprio M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med. 2020; 18: 104.PaoliAMancinLGiaconaMCBiancoACaprioMEffects of a ketogenic diet in overweight women with polycystic ovary syndromeJ Transl Med20201810410.1186/s12967-020-02277-0704552032103756Search in Google Scholar
Pérez-Guisado J, Muñoz-Serrano A, Alonso-Moraga Á. Spanish ketogenic mediterranean diet: A healthy cardiovascular diet for weight loss. Nutr J. 2008; 7: 30.Pérez-GuisadoJMuñoz-SerranoAAlonso-MoragaÁSpanish ketogenic mediterranean diet: A healthy cardiovascular diet for weight lossNutr J200873010.1186/1475-2891-7-30258662518950537Search in Google Scholar
Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult Scler Int. 2015; 2015: 681289.StoroniMPlantGTThe therapeutic potential of the ketogenic diet in treating progressive multiple sclerosisMult Scler Int2015201568128910.1155/2015/681289470972526839705Search in Google Scholar
Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E, Dahlin M, Prast-Nielsen S. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes. 2019; 5: 5.LindefeldtMEngADarbanHBjerknerAZetterströmCKAllanderTAnderssonBBorensteinEDahlinMPrast-NielsenSThe ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsyNPJ Biofilms Microbiomes20195510.1038/s41522-018-0073-2634453330701077Search in Google Scholar
Tagliabue A, Ferraris C, Uggeri F, Trentani C, Bertoli S, de Giorgis V, Veggiotti P, Elli M. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: A 3-month prospective observational study. Clin Nutr ESPEN. 2017; 17: 33–37.TagliabueAFerrarisCUggeriFTrentaniCBertoliSde GiorgisVVeggiottiPElliMShort-term impact of a classical ketogenic diet on gut microbiota in GLUT1 deficiency syndrome: A 3-month prospective observational studyClin Nutr ESPEN201717333710.1016/j.clnesp.2016.11.00328361745Search in Google Scholar
Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, Murphy MP, Sokola BS, Bauer B, Hartz AMS, Lin A-L. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018; 8: 6670.MaDWangACParikhIGreenSJHoffmanJDChlipalaGMurphyMPSokolaBSBauerBHartzAMSLinA-LKetogenic diet enhances neurovascular function with altered gut microbiome in young healthy miceSci Rep20188667010.1038/s41598-018-25190-5592327029703936Search in Google Scholar
Lee RWY, Corley MJ, Pang A, Arakaki G, Abbott L, Nishimoto M, Miyamoto R, Lee E, Yamamoto S, Maunakea AK, et al. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol Behav. 2018; 188: 205–211.LeeRWYCorleyMJPangAArakakiGAbbottLNishimotoMMiyamotoRLeeEYamamotoSMaunakeaAKA modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorderPhysiol Behav201818820521110.1016/j.physbeh.2018.02.006586303929421589Search in Google Scholar
Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism. 2016; 7: 37.NewellCBomhofMRReimerRAHittelDSRhoJMShearerJKetogenic diet modifies the gut microbiota in a murine model of autism spectrum disorderMol Autism201673710.1186/s13229-016-0099-3500954127594980Search in Google Scholar
Swidsinski A, Dörffel Y, Loening-Baucke V, Gille C, Göktas Ö, Reißhauer A, Neuhaus J, Weylandt KH, Guschin A, Bock M. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017; 8: 1141.SwidsinskiADörffelYLoening-BauckeVGilleCGöktasÖReißhauerANeuhausJWeylandtKHGuschinABockMReduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic dietFront Microbiol20178114110.3389/fmicb.2017.01141548840228702003Search in Google Scholar
Lee JE, Titcomb TJ, Bisht B, Rubenstein LM, Louison R, Wahls TL. A Modified MCT-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot study. J Am Coll Nutr. 2021; 40: 13–25.LeeJETitcombTJBishtBRubensteinLMLouisonRWahlsTLA Modified MCT-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot studyJ Am Coll Nutr202140132510.1080/07315724.2020.173498832213121Search in Google Scholar
Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018; 145: 163–168.ZhangYZhouSZhouYYuLZhangLWangYAltered gut microbiome composition in children with refractory epilepsy after ketogenic dietEpilepsy Res201814516316810.1016/j.eplepsyres.2018.06.01530007242Search in Google Scholar
Murtaza N, Burke L, Vlahovich N, Charlesson B., O’ Neill H., Ross ML, Campbell KL, Krause L, Morrison M. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019; 11: 261.MurtazaNBurkeLVlahovichNCharlessonB.O’ NeillH.RossMLCampbellKLKrauseLMorrisonMThe effects of dietary pattern during intensified training on stool microbiota of elite race walkersNutrients20191126110.3390/nu11020261641308430682843Search in Google Scholar