This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Anisimova N, Ustyuzhanina N, Bilan M, Donenko F, Usov A, Kiselevskiy M, Nifantiev N. Fucoidan and Fucosylated Chondroitin Sulfate Stimulate Hematopoiesis in Cyclophosphamide-Induced Mice. Mar Drugs. 2017;15:301. PMid:28973980. doi: https://doi.org/10.3390/md15100301.AnisimovaNUstyuzhaninaNBilanMDonenkoFUsovAKiselevskiyMNifantievNFucoidan and Fucosylated Chondroitin Sulfate Stimulate Hematopoiesis in Cyclophosphamide-Induced MiceMar Drugs20171530128973980doi: https://doi.org/10.3390/md15100301.Search in Google Scholar
Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo. 2008;22:385–9. PMid:18610752. .AsimakopoulouAPTheocharisADTzanakakisGNKaramanosNKThe biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agentsIn Vivo200822385918610752Search in Google Scholar
Bai X, Wang Y, Hu B, Cao Q, Xing M, Song S, Ji A. Fucoidan Induces Apoptosis of HT-29 Cells via the Activation of DR4 and Mitochondrial Pathway. Marine Drugs. 2020;18:220. doi: https://doi.org/10.3390/md18040220.BaiXWangYHuBCaoQXingMSongSJiAFucoidan Induces Apoptosis of HT-29 Cells via the Activation of DR4 and Mitochondrial PathwayMarine Drugs202018220doi: https://doi.org/10.3390/md18040220.Search in Google Scholar
Bittkau KS, Dörschmann P, Blümel M, Tasdemir D, Roider J, Klettner A, Alban S. Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines. Mar Drugs. 2019;17:441. PMid:31357497. doi: https://doi.org/10.3390/md17080441.BittkauKSDörschmannPBlümelMTasdemirDRoiderJKlettnerAAlbanSComparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell LinesMar Drugs20191744131357497doi: https://doi.org/10.3390/md17080441.Search in Google Scholar
Chantree P, Na-Bangchang K, Martviset P. Anticancer Activity of Fucoidan via Apoptosis and Cell Cycle Arrest on Cholangiocarcinoma Cell. Asian Pac J Cancer Prev. 2021;22:209–17. PMid:33507701. doi: https://doi.org/10.31557/APJCP.2021.22.1.209.ChantreePNa-BangchangKMartvisetPAnticancer Activity of Fucoidan via Apoptosis and Cell Cycle Arrest on Cholangiocarcinoma CellAsian Pac J Cancer Prev2021222091733507701doi: https://doi.org/10.31557/APJCP.2021.22.1.209.Search in Google Scholar
Duan Y, Li J, Jing X, Ding X, Yu Y, Zhao Q. Fucoidan Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma via the p38 MAPK/ERK and PI3K/Akt Signal Pathways. Cancer Manag Res. 2020;12:1713–23. PMid:32210612. doi: https://doi.org/10.2147/CMAR.S243495.DuanYLiJJingXDingXYuYZhaoQFucoidan Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma via the p38 MAPK/ERK and PI3K/Akt Signal PathwaysCancer Manag Res20201217132332210612doi: https://doi.org/10.2147/CMAR.S243495.Search in Google Scholar
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18. PMid:24831787. doi: https://doi.org/10.1089/adt.2014.573.EdmondsonRBroglieJJAdcockAFYangLThree-dimensional cell culture systems and their applications in drug discovery and cell-based biosensorsAssay Drug Dev Technol2014122071824831787doi: https://doi.org/10.1089/adt.2014.573.Search in Google Scholar
Hayakawa K, Nagamine T. Effect of Fucoidan on the Biotinidase Kinetics in Human Hepatocellular Carcinoma. Anticancer Research. 2009;29:1211–7. PMid:19414366. .HayakawaKNagamineTEffect of Fucoidan on the Biotinidase Kinetics in Human Hepatocellular CarcinomaAnticancer Research2009291211719414366Search in Google Scholar
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol. 2021;9:696640. PMid:34409033. doi: https://doi.org/10.3389/fcell.2021.696640.HayesAJMelroseJNeural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan MotifsFront Cell Dev Biol2021969664034409033doi: https://doi.org/10.3389/fcell.2021.696640.Search in Google Scholar
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14:910–9. PMid:30002710. doi: https://doi.org/10.5114/aoms.2016.63743.KapałczyńskaMKolendaTPrzybyłaWZajączkowskaMTeresiakAFilasVIbbsMBliźniakRŁuczewskiŁLamperskaK2D and 3D cell cultures – a comparison of different types of cancer cell culturesArch Med Sci201814910930002710doi: https://doi.org/10.5114/aoms.2016.63743.Search in Google Scholar
Kim BS, Kang H-J, Park J-Y, Lee J. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2–Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med. 2015;47:e128–e128. doi: https://doi.org/10.1038/emm.2014.95.KimBSKangH-JParkJ-YLeeJFucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2–Smad 1/5/8 signaling in human mesenchymal stem cellsExp Mol Med201547e128e128doi: https://doi.org/10.1038/emm.2014.95.Search in Google Scholar
Kiselevskiy MV, Anisimova NYu, Ustyuzhanina NE, Vinnitskiy DZ, Tokatly AI, Reshetnikova VV, Chikileva IO, Shubina IZh, Kirgizov KI, Nifantiev NE. Perspectives for the Use of Fucoidans in Clinical Oncology. Int J Mol Sci. 2022;23:11821. PMid:36233121. doi: https://doi.org/10.3390/ijms231911821.KiselevskiyMVAnisimovaNYuUstyuzhaninaNEVinnitskiyDZTokatlyAIReshetnikovaVVChikilevaIOShubinaIZhKirgizovKINifantievNEPerspectives for the Use of Fucoidans in Clinical OncologyInt J Mol Sci2022231182136233121doi: https://doi.org/10.3390/ijms231911821.Search in Google Scholar
Li H, Fan X, Houghton J. Tumor microenvironment: The role of the tumor stroma in cancer. Journal of Cellular Biochemistry. 2007;101:805–15. doi: https://doi.org/10.1002/jcb.21159.LiHFanXHoughtonJTumor microenvironment: The role of the tumor stroma in cancerJournal of Cellular Biochemistry200710180515doi: https://doi.org/10.1002/jcb.21159.Search in Google Scholar
Liu S, Yang J, Peng X, Li J, Zhu C. The Natural Product Fucoidan Inhibits Proliferation and Induces Apoptosis of Human Ovarian Cancer Cells: Focus on the PI3K/Akt Signaling Pathway. Cancer Manag Res. 2020;12:6195–207. PMid:32884336. doi: https://doi.org/10.2147/CMAR.S254784.LiuSYangJPengXLiJZhuCThe Natural Product Fucoidan Inhibits Proliferation and Induces Apoptosis of Human Ovarian Cancer Cells: Focus on the PI3K/Akt Signaling PathwayCancer Manag Res202012619520732884336doi: https://doi.org/10.2147/CMAR.S254784.Search in Google Scholar
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164:192–204. PMid:22613880. doi: https://doi.org/10.1016/j.jconrel.2012.04.045.MehtaGHsiaoAYIngramMLukerGDTakayamaSOpportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacyJ Control Release201216419220422613880doi: https://doi.org/10.1016/j.jconrel.2012.04.045.Search in Google Scholar
Nováková E, Mikušová V, Šupolíková M. Spheroids as 3D Cell Models for Testing of Drugs. European Pharmaceutical Journal. 2023;70:37–43. doi: https://doi.org/10.2478/afpuc-2023-0008.NovákováEMikušováVŠupolíkováMSpheroids as 3D Cell Models for Testing of DrugsEuropean Pharmaceutical Journal2023703743doi: https://doi.org/10.2478/afpuc-2023-0008.Search in Google Scholar
Saliba J, Manseur C, Groult H, Akil H, Tannoury M, Troutaud D, Maugard T, Feuillard J, Arnaudin I, Jayat-Vignoles C. Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network. Marine Drugs. 2023;21:132. doi: https://doi.org/10.3390/md21020132.SalibaJManseurCGroultHAkilHTannouryMTroutaudDMaugardTFeuillardJArnaudinIJayat-VignolesCAnti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin NetworkMarine Drugs202321132doi: https://doi.org/10.3390/md21020132.Search in Google Scholar
Sanjeewa KKA, Herath KHINM, Yang H-W, Choi CS, Jeon Y-J. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review. Mar Drugs. 2021;19:678. PMid:34940677. doi: https://doi.org/10.3390/md19120678.SanjeewaKKAHerathKHINMYangH-WChoiCSJeonY-JAnti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A ReviewMar Drugs20211967834940677doi: https://doi.org/10.3390/md19120678.Search in Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. doi: https://doi.org/10.1038/nmeth.2089.SchneiderCARasbandWSEliceiriKWNIH Image to ImageJ: 25 years of image analysisNat Methods201296715doi: https://doi.org/10.1038/nmeth.2089.Search in Google Scholar
Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology. 2012;10:29. doi: https://doi.org/10.1186/1741-7007-10-29.VinciMGowanSBoxallFPattersonLZimmermannMCourtWLomasCMendiolaMHardissonDEcclesSAAdvances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluationBMC Biology20121029doi: https://doi.org/10.1186/1741-7007-10-29.Search in Google Scholar
Zima J, Nováková E, Mikušová V, Šupolíková M. Štúdium liečivých látok na báze glykozaminoglykánov a sulfátovaných heteropolysacharidov s imunomodulačnými vlastnosťami. Bulletin ČSSM. 2022;4:140–51.ZimaJNovákováEMikušováVŠupolíkováMŠtúdium liečivých látok na báze glykozaminoglykánov a sulfátovaných heteropolysacharidov s imunomodulačnými vlastnosťamiBulletin ČSSM2022414051Search in Google Scholar