Cite

[1] PIETRIKOVA, A. – DURISIN, J. – MACH, P.: Diagnostika a Optimalizacia Pouzitia Ekologickych Materialov pre Vodive Spajanie v Elektronike, Technical University of Kosice, 2010. Search in Google Scholar

[2] SIEWIOREK, A.: Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy, Journal of Materials Engineering and Performance, no. 22, pp. 2247–2252, Feb. 2013.10.1007/s11665-013-0492-4 Search in Google Scholar

[3] MIN, Z. – QIU, Y.: Interfacial reaction and IMCs formation between Sn-0.7Cu solder and Cu substrate during reflow soldering, 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 1367-1370, 2015.10.1109/ICEPT.2015.7236833 Search in Google Scholar

[4] WANG, F.: Wettability, Interfacial Behavior and Joint properties of Sn-15Bi Solder, Journal of Electronic materials, vol. 48, pp. 6835-6848, 2019.10.1007/s11664-019-07473-3 Search in Google Scholar

[5] PANDHER, R. – PACHAMUTHU, A.: Effect of multiple reflow cycles on solder joint formation and reliability, Proceedings of the SMTA International Conference Proceedings, vol. 24, p. 28, 2010. Search in Google Scholar

[6] RABIATUL ADAWIYAH, M. A.: Impact of multiple reflow on intermetallic compound of nickel-doped tin-silver-copper on ENImAg substrate, Materialwiss, Werkstofftech, vol. 51, no. 6, pp. 780-786 2020.10.1002/mawe.201900246 Search in Google Scholar

[7] LIVOVSKY, L. – PIETRIKOVA, A.: Real-time profiling of reflow process in VPS chamber, Soldering and Surface Mount Technology, vol. 29, no. 1, pp. 42-48, 2017.10.1108/SSMT-10-2016-0026 Search in Google Scholar

[8] WIRTH, V. – RENDL, K. – STEINER, F.: Effect of multiple reflow cycles on intermetallic compound creation, 38th International Spring Seminar on Electronics technology (ISSE), Eger, Hungary, pp. 226-230, May 2015.10.1109/ISSE.2015.7247995 Search in Google Scholar

[9] KAHAR, H.: Influence of Second Reflow on the Intermetallic Compound Growth with Different Surface Finish, Key Engineering Materials, vol. 701, pp. 127-131, July 2016.10.4028/www.scientific.net/KEM.701.127 Search in Google Scholar

[10] HA, S.: Effect of multiple reflows on interfacial reactions and shear strength of Sn-Ag electroplated solder bumps for flip chip, Materials Science, vol. 87, pp. 517-521, 2010.10.1016/j.mee.2009.07.015 Search in Google Scholar

[11] RASBUDIN, J. I.: The effect of multiple reflow on intermetallic layer of Sn-4.0AgCu/Cu by using microwave and reflow soldering, Material Science and Engineering, vol. 238, 012014, 2017.10.1088/1757-899X/238/1/012014 Search in Google Scholar

[12] CHAR, M.: Retardation Effect of Tin Multilayer on Sn-3.0Ag-0.5Cu (SAC305)-Based Solder Joint Interface, Journal of Material Engineering and Performance, vol. 29, pp. 2305-2315, Apr. 2020.10.1007/s11665-020-04730-z Search in Google Scholar

[13] LIU, D. S. – NI, C. Y.: A study on the electrical resistance of solder joint interconnections, Microelectronic Engineering, vol. 63, pp. 363-372, 2002.10.1016/S0167-9317(02)00551-8 Search in Google Scholar

[14] GERSHMAN, I. – BERNSTEIN, J. B.: Solder-Joint Quantitative Crack Analysis – Ohmic Resistance Approach, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, pp. 748-765, 2012.10.1109/TCPMT.2012.2188894 Search in Google Scholar

[15] EL-KHAWAS, E. H.: Electrical resistivity and creep behaviour of hypoeutectic Sn-0.5Cu based solders for flip chip technology, Journal of Materials Science: Materials in Electronics, vol. 28, pp. 12176-12183, 2017.10.1007/s10854-017-7032-1 Search in Google Scholar

[16] HIRMAN, M.: Electrical resistance of Solder Joints on Conductive Ribbons, 43rd International Spring Seminar on Electronics Technology (ISSE), Kosice, pp. 1-5, 2020.10.1109/ISSE49702.2020.9120981 Search in Google Scholar

[17] FIELDS, R. J. – LOW, S. R. – LUCEY, G. K.: Physical and Mechanical Properties Of Intermetallic Compounds Commonly Found In Solder Joints, NIST, 2002. Search in Google Scholar

[18] KOO, J. M. – LEE, Y. H. – KIM, S. K. – JEONG, M.Y. – JUNG, S. B.: Mechanical and electrical properties of Sn-3.5Ag solder/Cu BGA packages during multiple reflows, Key Engineering Materials, vol. 297-300, pp. 801-806, 2005.10.4028/www.scientific.net/KEM.297-300.801 Search in Google Scholar

[19] SOHN, Y.: Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint, Metallurgical and Materials Transactions, vol. 51, pp. 2905–2914, 2020.10.1007/s11661-020-05739-8 Search in Google Scholar

[20] FENG, J. – HANG, C. – TIAN, Y. et al.: Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current, Scientific Reports vol. 8, no. 1, 2018.10.1038/s41598-018-20100-1578886829379073 Search in Google Scholar

[21] SHIKUN, M. A. – VRUBLEVSKAYA, O. N. – VOROBYOVA T. N.: Functions of 2-butyne-1,4-diol in the process of tin-silver alloy electrodeposition from the acidic sulfate solution, Surfaces and Interfaces, vol. 24, pp. 101059, 2021.10.1016/j.surfin.2021.101059 Search in Google Scholar

[22] LENTZ, T.: How Does Surface Finish Affect Solder Paste Performance, FCT Assembly, Greeley, USA, Final report, 2021. Available online: https://fctsolder.com/wp-content/uploads/2018/10/2018-SMTAI-How-Does-Surface-Finish-Affect-Solder-Paste-Performance.pdf Search in Google Scholar

[23] SMITH, D. – SIEWERT, T. – STEPHEN, L. – MADENI, J.: Database for Solder Properties With Emphasis on New Lead-Free Solders, 2002. Available online: https://www.msed.nist.gov/solder/NIST_LeadfreeSolder_v4.pdf Search in Google Scholar

[24] FIELDS, R. J. – LOW, S. R.: Physical and mechanical properties of intermetallic compounds commonly found in solder joints, NIST, Metallurgy Division and G. K. Lucey, Jr. Harry Diamond Laboratories, Published in Metal Science of Joining, Proceedings of TMS Symposium, Cincinnati, Oct 20-24, 1991. Search in Google Scholar

eISSN:
1338-3957
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Computer Sciences, Information Technology, Databases and Data Mining, Engineering, Electrical Engineering