Acceso abierto

An Influence of Factors of Flow Condition, Particle and Material Properties on Slurry Erosion Resistance


Cite

1. Al-Bukhaiti M. A., Ahmed S. M., Badran F. M. F., Emara K. M., Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear, 262 (2007) 1187–1198.10.1016/j.wear.2006.11.018Search in Google Scholar

2. Oka Y. I., Okamura K., Yoshida T., Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259 (2005) 95–101.10.1016/j.wear.2005.01.039Search in Google Scholar

3. Arora H. S., Grewal H. S., Singh H., Mukherjee S., Zirconium based bulk metallic glass-Better resistance to slurry erosion compared to hydroturbine steel. Wear, 307 (2013) 28–34.10.1016/j.wear.2013.08.016Search in Google Scholar

4. Finnie I., Erosion of surfaces by solid particles. Wear 3 (1960) 87–103.10.1016/0043-1648(60)90055-7Search in Google Scholar

5. Bitter J.G.A., A study of erosion phenomena, part I. Wear 6 (1963) 5–21.10.1016/0043-1648(63)90003-6Search in Google Scholar

6. Zbrowski A., Mizak W., Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego. Problemy eksploatacji, 3 (2011) 235–250, (in Polish)Search in Google Scholar

7. Sinha S.L., Dewangan S.K., Sharma A., A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry. Particulate Science and Technology, 35 (2017) 103–118.10.1080/02726351.2015.1131792Search in Google Scholar

8. Grewal H. S., Agrawal A., Singh H., Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance, 22 (2013) 152–161.10.1007/s11665-012-0219-ySearch in Google Scholar

9. Finnie I., Some reflections on the past and future of erosion. Wear 186–187 (1995) 1–10.10.1016/0043-1648(95)07188-1Search in Google Scholar

10. Buszko M.H., Krella A.K., Slurry erosion – design of test devices. Advances in Materials Science 17 (2017) 5–17.10.1515/adms-2017-0007Search in Google Scholar

11. Shitole P. P., Gawande S. H., Desale G. R., Nandre B. D., Effect of impacting particle kinetic energy on slurry erosion wear. Journal of Bio-and Tribo-Corrosion 1 (2015) 1–9.10.1007/s40735-015-0028-6Search in Google Scholar

12. Desale G.R., Gandhi B.K., Jain S.C., Slurry erosion of ductile materials under normal impact condition. Wear, 264 (2008) 322–330.10.1016/j.wear.2007.03.022Search in Google Scholar

13. Grewal H. S., Agrawal A., Singh H., Shollock B. A., Slurry erosion performance of Ni-Al2O3 based thermal-sprayed coatings: Effect of angle of impingement. Journal of Thermal Spray Technology, 23 (2014) 389–401.10.1007/s11666-013-0013-xSearch in Google Scholar

14. Grewal H. S., Agrawal A., Singh H., Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribolology Letters, 52 (2013) 287–303.10.1007/s11249-013-0213-zSearch in Google Scholar

15. Lathabai S., Pender D. C., Microstructural influence in slurry erosion of ceramics. Wear, 189 (1995) 122–135.10.1016/0043-1648(95)06679-9Search in Google Scholar

16. Thakur L., Arora N., A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear, 303 (2013).10.1016/j.wear.2013.03.028Search in Google Scholar

17. Paul C.P., Gandhi B.K., Bhargava P., Dwivedi D.K., Kukreja L.M., Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for improved cavitation and slurry erosion Wear Behavior. Journal of Materials Engineering and Performance, 23 (2014) 4463–4471.10.1007/s11665-014-1244-9Search in Google Scholar

18. Hejwowski T., Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne. Politechnika Lubelska, Lublin, 2013, (in Polish).Search in Google Scholar

19. Clark H. M., Hawthorne H. M., Xie Y., Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear, 233–235 (1999) 319–327.10.1016/S0043-1648(99)00213-6Search in Google Scholar

20. Santa J.F., Baena J.C., Toro A., Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (2007) 258–264.10.1016/j.wear.2006.12.061Search in Google Scholar

21. Santa J.F., Espitia L.A., Blanco J.A., Romo S.A., Toro A., Slurry and cavitation erosion resistance of thermal spray coatings. Wear, 267 (2009) 160–167.10.1016/j.wear.2009.01.018Search in Google Scholar

22. Mann B.S., High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear, 237 (2000) 140–146.10.1016/S0043-1648(99)00310-5Search in Google Scholar

23. Mann B.S., Arya V., Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear, 249 (2001) 354–360.10.1016/S0043-1648(01)00537-3Search in Google Scholar

24. Romo S.A., Santa J.F., Giraldo J.E., Toro A., Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy. Tribology International, 47 (2012) 16–24.10.1016/j.triboint.2011.10.003Search in Google Scholar

25. Hutchings I.M., Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London, 1992.10.1016/0261-3069(92)90241-9Search in Google Scholar

26. Thakur P.A., Khairnar H.S., Deore E.R., More S.R., Development of slurry jet erosion tester to simulate the erosion wear due to solid-liquid mixture. International Journal of Novel Research in Engineering and Science, 2 (2015) 14–20.Search in Google Scholar

27. Saleh B., Ahmed S.M., Slurry erosion-corrosion of carburized AISI 5117 steel. Tribolology Letters, 51 (2013) 135–142.10.1007/s11249-013-0155-5Search in Google Scholar

28. Zhao H.X., Goto H., Matsumura M., Takahashi T., Yamamoto M., Slurry erosion properties of ceramic coatings. Wear, 233–235 (1999) 608–614.10.1016/S0043-1648(99)00238-0Search in Google Scholar

29. Fang Q., Xu H., Sidky P.S., Hocking M.G., Erosion of ceramic materials by a sand/water slurry jet. Wear, 224 (1999) 183–193.10.1016/S0043-1648(98)00309-3Search in Google Scholar

30. Laguna-Camacho J.R., Marquina-Chávez A., Méndez-Méndez J.V., Vite-Torres M., Gallardo-Hernández E.A., Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear, 301 (2013) 398–405.10.1016/j.wear.2012.12.047Search in Google Scholar

31. Basha S. S., Periasamy V. M., Kamaraj M., Slurry erosion resistance of laser-modified 16Cr – 5Ni stainless steel. International Journal of ChemTech Research, 6 (2014) 691–704.Search in Google Scholar

32. de Bree S., Rosenbrand W., de Gee A., On the erosion resistance in water-sand mixtures of steels for application in slurry pipelines. Proc. 8th Int. Conf. Hydraulic Transport of Solids in Pipes, BHRA Fluid Engineering, Johannesburg, 1982, Paper C3.Search in Google Scholar

33. Fuyan L., Hesheng S., The effect of impingement angle on slurry erosion. Wear, 141 (1991) 279–289.10.1016/0043-1648(91)90274-XSearch in Google Scholar

34. Gandhi B.K., Singh S.N., Seshadri V., Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures. Tribology International, 32 (1999) 275–282.10.1016/S0301-679X(99)00047-XSearch in Google Scholar

35. Gupta R., Singh S. N., Sehadri V., Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear, 184 (1995) 169–178.10.1016/0043-1648(94)06566-7Search in Google Scholar

36. Lin F. Y., Shao H. S., Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear, 143 (1991) 231–240.10.1016/0043-1648(91)90098-FSearch in Google Scholar

37. Thapa B., Sand erosion in hydraulic machinery. PhD Thesis, Norwegian University of Science and Technology (NTNU), 2004.Search in Google Scholar

38. Levy A.V., Yau P., Erosion of steels in liquid slurries. Wear, 98 (1984) 163–182.10.1016/0043-1648(84)90225-4Search in Google Scholar

39. Nguyen Q. B. Lim C.Y.H., Nguyen V.B., Wan Y.M., Nai B., Zhang Y.W., Gupta M., Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International, 79 (2014) 1–7.10.1016/j.triboint.2014.05.014Search in Google Scholar

40. Hawthorne H.M., Some Coriolis slurry erosion test developments. Tribology International, 35 (2002) 625–630.10.1016/S0301-679X(02)00053-1Search in Google Scholar

41. Clark H.M., Tuzson J., Wong K.K., Measurements of specific energies for erosive wear using a Coriolis erosion tester. Wear 241 (2000) 1–9.10.1016/S0043-1648(00)00327-6Search in Google Scholar

42. Singh G., Virdi R. L., Goyal K., Experimental investigation of slurry erosion behaviour of hard faced AISI 316L Stainless Steel. Universal Journal of Mechanical Engineering 3 (2015) 52–56.10.13189/ujme.2015.030204Search in Google Scholar

43. Grewal H. S., Arora H. S., Agrawal A., Singh H., Mukherjee S., Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Engineering 68 (2013) 484–490.10.1016/j.proeng.2013.12.210Search in Google Scholar

44. Turenne S., Fiset M., Masounave J., The effect of sand concentration on the erosion of materials by a slurry jet. Wear, 133 (1989) 95–106.10.1016/0043-1648(89)90116-6Search in Google Scholar

45. Prasad B.K., Jha A.K., Modi O.P., Yegneswaran A.H., Effect of sand concentration in the medium and travel distance and speed on the slurry wear response of a zinc-based alloy alumina particle composite. Tribolology Letters, 17 (2004) 301–304.10.1023/B:TRIL.0000032468.27468.2cSearch in Google Scholar

46. Burnett A.J., De Silva S.R., Reed A.R., Comparisons between “sand blast” and “centripetal effect accelerator” type erosion testers. Wear, 186–187 (1995) 168–178.10.1016/0043-1648(95)07143-1Search in Google Scholar

47. Kleis. I, Kulu P., Solid Particle Erosion. [In] Influence of Particle Concentration. Springer-Verlag London Limited, 2008, 24–27.Search in Google Scholar

48. Bong E.Y., Parthasarathy R., Wu J., Eshtiaghi N., Effect of baffles on solid-liquid mass transfer coefficient in high solid concentration mixing. Chemeca 2012: Quality of life through chemical engineering, Wellington, New Zealand, 2012, 1870–1880.Search in Google Scholar

49. Shehadeh M., Anany M., Saqr K.M., Hassan I., Experimental investigation of erosion corrosion phenomena in a steel fitting due to plain and slurry seawater flow. International Journal of Mechanical and Materials Engineering, 9 (2014) 1–9.10.1186/s40712-014-0022-7Search in Google Scholar

50. Dabirian R., Mohan R., Shoham O., Kouba G., Critical sand deposition velocity for gas liquid stratified flow in horizontal pipes. Journal of Natural Gas Science and Engineering, 33 (2016) 527–536.10.1016/j.jngse.2016.05.008Search in Google Scholar

51. Bartosik A., Influence of coarse-dispersive solid phase on the ‘particles–wall’ shear stress in turbulent slurry flow with high solid concentration. The Archive of Mechanical Engineering, 57 (2010) 45–68.10.2478/v10180-010-0003-1Search in Google Scholar

52. Bjordal M., Bardal E., Rogne T., Eggen T.G., Combined erosion and corrosion of thermal sprayed WC and CrC coatings. Surface and Coatings Technology 70 (1995) 215–220.10.1016/0257-8972(94)02266-SSearch in Google Scholar

53. Padhy M.K., Saini R.P., Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 34 (2009) 1477–1483.10.1016/j.energy.2009.06.015Search in Google Scholar

54. Elkholy A., Prediction of abrasion wear for slurry pump materials. Wear, 84 (1983) 39–49.10.1016/0043-1648(83)90117-5Search in Google Scholar

55. Lindgren M., Perolainen J., Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades. Wear, 319 (2014) 38–48.10.1016/j.wear.2014.07.006Search in Google Scholar

56. Zitoun K., Sastry S., Guezennec Y., Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid–liquid flow using particle tracking velocimetry. International Journal of Multiphase Flow, 27 (2001) 1397–1414.10.1016/S0301-9322(01)00011-8Search in Google Scholar

57. Yang J.-Z., Fang M.-H., Zhao-Hui Huang Z.-H., Hu X.-Z., Liu Y.-G., Sun H.-R., Huang J.-T., Li X.-Ch., Solid particle impact erosion of alumina-based refractories at elevated temperatures. Journal of the European Ceramic Society 32 (2012) 283–289.10.1016/j.jeurceramsoc.2011.08.017Search in Google Scholar

58. Sundararajan G., Roy M., Solid particle erosion behavior of metallic materials at room and elevated temperatures. Tribology International, 30 (1997) 339–359.10.1016/S0301-679X(96)00064-3Search in Google Scholar

59. Wang X., Fang M., Zhang L.-C., Ding H., Liu Y.-G., Huang Z., Huang S., Yang J., Solid particle erosion of alumina ceramics at elevated temperature. Materials Chemistry and Physics, 139 (2013) 765–769.10.1016/j.matchemphys.2013.02.029Search in Google Scholar

60. Sarlin E., Lindgren M., Suihkonen R., Siljander S., Kakkonen M., Vuorinen J., High-temperature slurry erosion of vinylester matrix composites – The effect of test parameters. Wear, 328–329 (2015) 488–497.10.1016/j.wear.2015.03.021Search in Google Scholar

61. Stack M.M., Pungwiwat N., Slurry erosion of metallics, polymers, and ceramics: particle size effects. Materials Science and Technology 15 (1999) 337–344.10.1179/026708399101505770Search in Google Scholar

62. Gandhi B.K., Borse S.V., Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles. Wear, 257 (2004) 73–79.10.1016/j.wear.2003.10.013Search in Google Scholar

63. Desale G.R., Gandhi B.K., Jain S.C., Particle size effects on the slurry erosion of aluminium alloy (AA 6063). Wear, 266 (2009) 1066–1071.10.1016/j.wear.2009.01.002Search in Google Scholar

64. Sheldon G.L., Finnie I., On the ductile behaviour of nominally brittle materials during erosive cutting. Journal of Engineering for Industry, 88 (1966) 387–392.10.1115/1.3672666Search in Google Scholar

65. Stachowiak G.W., Batchelor A.W., Engineering Tribology (fourth edition). [In] Abrasive, Erosive and Cavitation Wear. Elsevier Butterworth-Heinemann, 2014, 525–576.10.1016/B978-0-12-397047-3.00011-4Search in Google Scholar

66. Lynn R.S., Wong K.K., Clark H.M., On the particle size effect in slurry erosion. Wear, 149 (1991) 55–71.10.1016/0043-1648(91)90364-ZSearch in Google Scholar

67. Stachowiak G.W., Particle angularity and its relationship to abrasive and erosive wear. Wear, 241 (2000) 214–219.10.1016/S0043-1648(00)00378-1Search in Google Scholar

68. Bahadur S., Badruddin R., Erodent particle characterization and the effect of particle size and shape on erosion. Wear, 138 (1990) 189–208.10.1016/0043-1648(90)90176-BSearch in Google Scholar

69. Desale G.R., Gandhi B.K., Jain S.C., Effect of physical properties of solid particle on erosion wear of ductile materials. Porc. of World Tribology Congress III, Washington, D.C., USA, 2005, 149–150.10.1115/WTC2005-63997Search in Google Scholar

70. Raadnui S., Wear particle analysis - Utilization of quantitative computer image analysis: A review. Tribology International, 38 (2005) 871–878.10.1016/j.triboint.2005.03.013Search in Google Scholar

71. Bouwman A.M., Bosma J.C., Vonk P., Wesselingh J. (Hans) A., Frijlink H.W., Which shape factor(s) best describe granules?. Powder Technology, 146 (2004) 66–72.10.1016/j.powtec.2004.04.044Search in Google Scholar

72. Roylance B.J., Raadnui S., The morphological attributes identifying wear mechanisms of wear particles their role in identifyinf wear mechanisms. Wear 175 (1994) 115–1210.1016/0043-1648(94)90174-0Search in Google Scholar

73. Cox E.P., A method of assigning numerical and percentage values to the degree of roundnedd of sand grains. Journal of Palentology, 1 (1927) 179–183.Search in Google Scholar

74. Al-Bukhaiti M.A., Abouel-Kasem A., Emara K.M., Ahmed S.M., Particle shape and size effects on slurry erosion of AISI 5117 steels. Journal of Tribology, 138 (2016).10.1115/1.4031987Search in Google Scholar

75. Chen Q., Li D.Y., Computer simulation of solid particle erosion. Wear, 254 (2003) 203–210.10.1016/S0043-1648(03)00006-1Search in Google Scholar

76. Singh J., Kumar S., Mohapatra S.K, Kumar S., Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique. Materials Today: Proceedings, 5 (2018) 17786–17791.10.1016/j.matpr.2018.06.103Search in Google Scholar

77. Lathabai S., Effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta mater., 43 (2000) 465–470.10.1016/S1359-6462(00)00415-2Search in Google Scholar

78. Shetty D.K., Wright I.G., Stropki J.T., Slurry erosion of WC-Co cermets and ceramics. ASLE Transactions, 28 (1985) 123–133.10.1080/05698198508981604Search in Google Scholar

79. Wood R.J.K., Mellor B.G., Binfield M.L., Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear, 211 (1997) 70–83.10.1016/S0043-1648(97)00071-9Search in Google Scholar

80. Feng Z., Ball A., The erosion of four materials using seven erodents-towards an understanding. Wear, 233–235 (1999) 674–684.10.1016/S0043-1648(99)00176-3Search in Google Scholar

81. Wang Y-F., Yang Z-G., Finite element model of erosive wear on ductile and brittle materials. Wear 265 (2008) 871–878.10.1016/j.wear.2008.01.014Search in Google Scholar

82. Javaheri V., Porter D., KuokkalaV-T., Slurry erosion of steel – Review of tests, mechanisms and materials. Wear, 408–409 (2018) 248–273.10.1016/j.wear.2018.05.010Search in Google Scholar

83. Mellali M., Grimaud A., Leger A.C., Fauchais P., Lu J., Alumina grit blasting parameters for surface preparation in the Plasma Spraying Operation. Journal of Thermal Spray Technology, 6 (1992) 217–227.10.1007/s11666-997-0016-6Search in Google Scholar

84. Syamsundar C., Chatterjee D., Kamaraj M., Maiti A.K., Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate. J. Mater. Eng. Perform., 24 (2015) 1391–1405.10.1007/s11665-015-1403-7Search in Google Scholar

85. Shipway P.H., Hutchings I.M., The role of particle properties in the erosion of brittle materials. Wear, 193 (1996) 105–113.10.1016/0043-1648(95)06694-2Search in Google Scholar

86. Tsai W., Humphrey J.A.C., Cornet I., Levy A.V., Experimental measurement of accelerated erosion in a slurry pot tester. Wear, 68 (1981) 289–303.10.1016/0043-1648(81)90178-2Search in Google Scholar

87. Levy A.V., The solid particle erosion behavior of steel as a function of microstructure. Wear, 68 (1981) 269–287.10.1016/0043-1648(81)90177-0Search in Google Scholar

88. Gadhikar A.A., Sharma A., Goel D.B., Sharma C.P., Effect of carbides on erosion resistance of 23-8-N steel. Bull. Mater. Sci., 37 (2014) 315–319.10.1007/s12034-014-0656-3Search in Google Scholar

89. Kumar A., Sharma A., Goel S.K., Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 21-4-N nitronic steel. SOJ Mater. Sci. Eng., 4 (2016) 1–5.10.15226/sojmse.2016.00122Search in Google Scholar

90. Meng H.C., Ludema K.C., Wear models and predictive equations: their form and content. Wear, 181–183 (1995) 443–457.10.1016/0043-1648(95)90158-2Search in Google Scholar

91. Wang G.R., Chu F., Tao S.Y., Jiang L., Zhu H., Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology. Wear 338–339 (2015) 114–121.10.1016/j.wear.2015.06.001Search in Google Scholar

92. Zhang J., Kang J., Fan J., Gao J., Research on erosion wear of high-pressure pipes during hydraulic fracturing slurry flow. Journal of Loss Prevention in the Process Industries, 43 (2016) 438–448.10.1016/j.jlp.2016.07.008Search in Google Scholar

93. Singh J., Singh J.P., Singh M., Szala M., Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow. CMES’18, MATEC Web Conf., 252 (2019) 04008.10.1051/matecconf/201925204008Search in Google Scholar

94. Hassan M.A., El-Sharief M.A., Aboul-Kasem A., Ramesh S., Purbolaksono J.,A fuzzy model for evaluation and prediction of slurry erosion of 5127 steels. Materials and Design, 39 (2012) 186–191.10.1016/j.matdes.2012.02.012Search in Google Scholar

95. Hernik B., Pronobis M., Wejkowski R., Wojnar W., Experimental verification of a CFD model intended for the determination of restitution coefficients used in erosion modelling. WTiUE 2016, E3S Web of Conferences, 13 (2017) 05001.10.1051/e3sconf/20171305001Search in Google Scholar

96. Nicholls J.R., Coatings and hardfacing alloys for corrosion and wear resistance in diesel engines. Mater. Sci. Technol., 10 (1994) 1002–1012.10.1179/mst.1994.10.11.1002Search in Google Scholar

97. Bhushan B., Fundamentals of Tribology and Bridging the Gab between Macro- and Micro/Nanoscale. B. Bhushan [ed.], Kluwer Academic Publishers, Netherlands, 2014.Search in Google Scholar

98. Carter C.B., Norton M.G., Ceramic Materials. Springer New York, New York, 2013.10.1007/978-1-4614-3523-5Search in Google Scholar

99. Preece C.M., Macmilla N.H., Erosion. Ann. Rev. Mater. Sci., 7 (1977) 95–121.10.1146/annurev.ms.07.080177.000523Search in Google Scholar

100. Bhandari S., Singh H., Kumar H., Rastogi V., Slurry erosion performance study of detonation gun-sprayed WC-10Co-4Cr coatings on CF8M steel under hydro-accelerated conditions. J. Therm. Spray Technol. 21 (2012) 1054–1064.10.1007/s11666-012-9799-1Search in Google Scholar

101. Quinn T.F.J., The role of wear in the failure of common tribosystems. Wear, 100 (1984) 399–436.10.1016/0043-1648(84)90024-3Search in Google Scholar

102. Larson J.M., Jenkins L.F., Narasimhan S.L., Belmore J.E., Engine Valves-Design and Material Evolution. J. Eng. Gas Turbines Power 109 (1987) 355–361.10.1115/1.3240048Search in Google Scholar

103. Zahavi J., Schmitt G.F., Solid particle erosion of polymeric coatings. Wear, 71 (1981) 191–210.10.1016/0043-1648(81)90338-0Search in Google Scholar

104. Lima C.R.C., Mojena M.A.R., Della Rovere C.A., de Souza N.F.C., Fals H.D.C., Slurry erosion and corrosion behavior of some engineering polymers applied by low-pressure flame spray. J. Mater. Eng. Perform., 25 (2016) 4911–4918.10.1007/s11665-016-2317-8Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ciencia de los materiales, Materiales funcionales e inteligentes