Cite

1. Bucala R, Vlassara H: Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 1995, 26(6):875-888.10.1016/0272-6386(95)90051-9 Search in Google Scholar

2. Wang J, Wang H: Oxidative stress in pancreatic beta cell regeneration. Oxid Med Cell Longev 2017, 2017:1930261.10.1155/2017/1930261556009628845211 Search in Google Scholar

3. International Diabetes Federation: IDF Diabetes Atlas, 9th edn. Brussels, Belgium: International Diabetes Federation 2019. http://www.diabetesatlas.org Search in Google Scholar

4. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun 2004, 314:197–207.10.1016/j.bbrc.2003.12.07314715266 Search in Google Scholar

5. King GL, Loeken MR: Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 2004. 22:333–338.10.1007/s00418-004-0678-915257460 Search in Google Scholar

6. Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT: Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 2007, 40:345–353.10.1016/j.bone.2006.09.011191320817064973 Search in Google Scholar

7. Hamada Y, Kitazawa S, Kitazawa R, Fujii H, Kasuga M, Fukagawa M: Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: A possible role of oxidative stress. Bone 2007, 40:1408–1414.10.1016/j.bone.2006.12.05717251074 Search in Google Scholar

8. Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P: Pentosidine effects on human osteoblasts in vitro, in: Annals of the New York Academy of Sciences Blackwell Publishing Inc 2008, 1126(1):166–172.10.1196/annals.1433.04418448811 Search in Google Scholar

9. Abbassy MA, Watari I, Soma K: The effect of diabetes mellitus on rat mandibular bone formation and microarchitecture. Eur J Oral Sci 2010, 118:364–369.10.1111/j.1600-0722.2010.00739.x20662909 Search in Google Scholar

10. Zhen D, Chen Y, Tang X: Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 2010, 24:334–344.10.1016/j.jdiacomp.2009.05.00219628413 Search in Google Scholar

11. Okazaki K, Yamaguchi T, Tanaka KI, Notsu M, Ogawa N, Yano S, Sugimoto T: Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 2012, 91:286–296.10.1007/s00223-012-9641-222903508 Search in Google Scholar

12. Zheng W, Wang S, Wang J, Jin F: Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int J Mol Med 2015, 36:915–922.10.3892/ijmm.2015.2314456409026310866 Search in Google Scholar

13. Lebovitz HE:Diagnosis, classification, and pathogenesis of diabetes mellitus. J Clin Psychiatry 2001, 62:5–9. Search in Google Scholar

14. Inzerillo AM, Epstein S:. Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord 2004, 5:261–268.10.1023/B:REMD.0000032415.83124.20 Search in Google Scholar

15. Duarte, V.M.G., Ramos, A.M.O., Rezende, L.A., Macedo, U.B.O., Brandão-Neto, J., Almeida, M.G., Rezende, A.A., 2005. Osteopenia: A bone disorder associated with diabetes mellitus. J Bone Miner Metab 23, 58–68.10.1007/s00774-004-0542-y15616896 Search in Google Scholar

16. Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, Wang X: Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res 2009, 24:1618–1627.10.1359/jbmr.090316273093119338453 Search in Google Scholar

17. Herskind AM, Christensen K, Nørgaard-Andersen K, Andersen JF: Diabetes mellitus and healing of closed fractures. Diab Metab 1992, 18:63–64. Search in Google Scholar

18. Forsén L, Meyer HE, Midthjell K, Edna TH: Diabetes mellitus and the incidence of hip fracture: Results from the Nord-Trondelag health survey. Diabetologia 1999, 42:920–925.10.1007/s00125005124810491750 Search in Google Scholar

19. Vestergaard P, Rejnmark L, Mosekilde L: Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 2009, 84:45–55.10.1007/s00223-008-9195-519067021 Search in Google Scholar

20. Vestergaard P: Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - A meta-analysis. Osteoporos Int 2007, 18:427–444.10.1007/s00198-006-0253-417068657 Search in Google Scholar

21. Hampson G, Evans C, Petitt RJ, Evans WD, Woodhead SJ, Peters JR, Ralston SH: Bone mineral density, collagen type 1 α 1 genotypes and bone turnover in premenopausal women with diabetes mellitus. Diabetologia 1998, 41:1314–1320.10.1007/s0012500510719833939 Search in Google Scholar

22. López-Ibarra P-J, Pastor MMC, Escobar-Jiménez F, Pardo MDS, González AG, Luna JDD, González AG, Requena MER, Diosdado MA:. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr Pract 2001,. 7:346–351.10.4158/EP.7.5.34611585369 Search in Google Scholar

23. Mastrandrea LD, Wactawski-Wende J, Donahue RP, Hovey KM, Clark A, Quattrin T: Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 2008, 31:1729–1735.10.2337/dc07-2426251833318591404 Search in Google Scholar

24. Kristin K, Nicodemus BA, Aaron R, Folsom MD: Type 1 and Type 2 Diabetes and Incident Hip Fractures in Postmenopausal Women. Epidemiology 2001, 24:1192–1197.10.2337/diacare.24.7.119211423501 Search in Google Scholar

25. Lim DW, Kim YT: Anti-osteoporotic effects of Angelica sinensis (Oliv.) Diels extract on ovariectomized rats and its oral toxicity in rats. Nutrients 2014, 6(10): 4362–4372.10.3390/nu6104362421092225325255 Search in Google Scholar

26. Parasuraman S, Thing GS, Dhanaraj SA: Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014, 8(16):73-80.10.4103/0973-7847.134229412782425125878 Search in Google Scholar

27. Han X, Yang Y, Metwaly AM, Xue Y, Shi Y, Dou D: The Chinese herbal formulae (Yitangkang) exerts an antidiabetic effect through the regulation of substance metabolism and energy metabolism in type 2 diabetic rats. J Ethnopharmacol 2019, 239:111942.10.1016/j.jep.2019.11194231075380 Search in Google Scholar

28. Künzle J: Herbs and weeds: A practical booklet on medicinal herbs Switzerland 1911. Search in Google Scholar

29. Madić V, Stojanović-Radić Z, Jušković M, Jugović D, Žabar-Popović A, Vasiljević P:. Genotoxic and antigenotoxic potential of herbal mixture and five medicinal plants used in ethnopharmacology. South African J Bot 2019, 125:290–297.10.1016/j.sajb.2019.07.043 Search in Google Scholar

30. Madić V, Petrović A, Jušković M, Jugović D, Djordjević Lj, Stojanović G, Vasiljević P: Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol 2021, 265:113210.10.1016/j.jep.2020.11321032795501 Search in Google Scholar

31. Liang W, Luo Z, Ge S, Li M, Du J, Yang M, Yan M, Ye Z, Luo Z: Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol 2011, 670:317–324.10.1016/j.ejphar.2011.08.01421914440 Search in Google Scholar

32. Abu Ayana MA, Elmasry NA, Shehata FI, Khalil NM: Efficiacy of quercetin on alveolar bone structure of rats with induced diabetes. Alexandria Dent J 2017, 42:141–146.10.21608/adjalexu.2017.57917 Search in Google Scholar

33. Banda M, Nyirenda J, Muzandu K, Sijumbila G, Mudenda S: Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Front Pharmacol 2018, 9-1099.10.3389/fphar.2018.01099617236030323764 Search in Google Scholar

34. Ay B, Parolia K, Liddell RS, Qiu Y, Grasselli G, Cooper DML, Davis JE: Hyperglycemia compromises Rat Cortical Bone by Increasing Osteocyte Lacunar Density and Decreasing Vascular Canal Volume. Commun Biol 2020, 3:20.10.1038/s42003-019-0747-1695240631925331 Search in Google Scholar

35. Mullender MG, Van Der Meer DD, Huiskes R, Lips P: Osteocyte density changes in aging and osteoporosis. Bone 1996, 18:109–113.10.1016/8756-3282(95)00444-0 Search in Google Scholar

36. Leite Duarte ME, da Silva RD: Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med 1996, 51:7–11. Search in Google Scholar

37. Vashishth D, Gibson G, Kimura J, Schaffler MB, Fyhrie DP: Determination of bone volume by osteocyte population. Anat. Rec 2002, 267:292–295.10.1002/ar.10114 Search in Google Scholar

38. He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai K:Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment. Acta Biomater 2018, 80:412-424.10.1016/j.actbio.2018.09.036 Search in Google Scholar

39. Tuukkanen J, Koivukangas A, Jämsä T, Sundquist K, MacKay CA, Marks SC: Mineral Density and Bone Strength Are Dissociated in Long Bones of Rat Osteopetrotic Mutations. J Bone Miner Res 2000, 15:1905–1911.10.1359/jbmr.2000.15.10.1905 Search in Google Scholar

40. Chauhan S, Sharma A, Upadhyay NK, Singh G, Lal UR, Goyal R: In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of Bombax ceiba with quantification of Lupeol, gallic acid and β-sitosterol by HPTLC and HPLC. BMC Complement Altern Med 2018:18.10.1186/s12906-018-2299-1 Search in Google Scholar

41. Domazetovic V, Marcucci G, Pierucci F, Bruno G, Di Cesare Mannelli L, Ghelardini C, Brandi ML, Iantomasi T, Meacci E, Vincenzini MT: Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT1. FEBS Open Bio 2019, 9:1082–1096.10.1002/2211-5463.12634 Search in Google Scholar

42. Zeiger E: Illusions of safety: antimutagens can be mutagens, and anticarcinogens can be carcinogens. Mutat Res / Reviews in Mutat Res 2003, 543:191–194.10.1016/S1383-5742(02)00111-4 Search in Google Scholar

43. Mody N, Parhami F, Sarafian TA, Demer LL: Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 2001, 31:509–519.10.1016/S0891-5849(01)00610-4 Search in Google Scholar

44. El-Tantawy WH, Al Haleem ENA: Therapeutic effects of stem cell on hyperglycemia, hyperlipidemia, and oxidative stress in alloxan-treated rats. Mol Cell Biochem. 2014, 391:193-200.10.1007/s11010-014-2002-x24604673 Search in Google Scholar

45. Fowlkes JL, Bunn RC, Thrailkill KM. Contributions of the insulin/insulin-like growth factor-1 axis to diabetic osteopathy. J Diabetes Metab. 2011, 1(3):S1-003.10.4172/2155-6156.S1-003359308723484069 Search in Google Scholar

46. Tsentidis C, Gourgiotis D, Kossiva L, et al. Higher levels of s- RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016; 27:1631-1643.10.1007/s00198-015-3422-526588909 Search in Google Scholar

47. Shah VN, Harrall KK, Shah CS, et al. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature. Osteoporos Int. 2017, 28:2601-2610.10.1007/s00198-017-4097-x28580510 Search in Google Scholar

48. Yano H, Ohya K, Amagasa T: Effects of Insulin on in vitro bone formation in fetal rat parietal bone. Endocr J. 1994, 41:293-300.10.1507/endocrj.41.2937951582 Search in Google Scholar

49. Cortizo AM, Sedlinsky C, McCarthy D, Blanco A, Schurman L: Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol. 2006, 536:38-4610.1016/j.ejphar.2006.02.03016564524 Search in Google Scholar

50. Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem. 2011, 112:2902-2909.10.1002/jcb.2320621618594 Search in Google Scholar

51. Gao Y, Li Y, Xue J, Jia Y, Hu J: Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol. 2010, 635:231-263.10.1016/j.ejphar.2010.02.05120307532 Search in Google Scholar

52. Behera HN, Patnaik BK: Recovery from alloxan diabetes as revealed by collagen characteristics of bone, skin and tendon of Swiss Mice. Gerontology 1981, 27:32-36.10.1159/0002124467215817 Search in Google Scholar

53. Villarino ME, Sánchez LM, Bozal CB, Ubios AM: Influence of short-term diabetes on osteocytic lacunae of alveolar bone. A histomorphometric study. Acta Odontol Latinoam 2006, 19:23–28. Search in Google Scholar

54. Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky C: Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J J Bone Miner Res 2010, 25: 211-221.10.1359/jbmr.09073219594306 Search in Google Scholar

55. Spanheimer RG, Umpierrez GE, Stumpf V: Decreased collagen production in diabetic rats. Diabetes 1988, 37:371–376.10.2337/diab.37.4.3713378683 Search in Google Scholar

56. Pulido R, Bravo L, Saura-Calixto F: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 2000, 48:3396–3402.10.1021/jf991345810956123 Search in Google Scholar

57. Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A: Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radic. Res 2010, 44:473–478.10.3109/1071576100361076020166881 Search in Google Scholar

58. Jeszka-Skowron M, Krawczyk M, Zgoła-Grześkowiak A: Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J Food Compos Anal 2015, 40:70-77.10.1016/j.jfca.2014.12.015 Search in Google Scholar

59. Frei B, Higdon JV: Antioxidant Activity of Tea Polyphenols In Vivo: Evidence from Animal Studies. J Nutr 2003, 133(10):3275S-3284S.10.1093/jn/133.10.3275S14519826 Search in Google Scholar

60. Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, Yamada S, Inagaki K, Oguchi K: Tea Polyphenols Inhibit Rat Osteoclast Formation and Differentiation. J Pharmacol Sci 2011, 118(1):55-64.10.1254/jphs.11082FP32092838 Search in Google Scholar

61. Hasan W, Ahmad S, Thakur H, Abbas M: In vitro regulation of osteoclast generation: a cost-effective strategy to combat osteoporosis with natural antioxidants and polyphenols like EGCG. Eur J Acad Res 2014, 2:2286-4822. Search in Google Scholar

62. Nicolin, V., De Tommasi, N., Nori, S.L., Costantinides, F., Berton, F., Di Lenarda, R., 2019. Modulatory Effects of Plant Polyphenols on Bone Remodeling: A Prospective View From the Bench to Bedside. Front Endocrinol (Lausanne). 10, 494.10.3389/fendo.2019.00494666399531396157 Search in Google Scholar

63. Jayachandrana M, Wua Z, Ganesana K, Khalidb S, Chunga SM, Xua B: Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chem-Biol Interact 2019, 303:62-69.10.1016/j.cbi.2019.02.01730817903 Search in Google Scholar

64. Kyung TW, Lee JE, Shin HH, Choi HS: Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-α by inhibiting activation of NF-κB. Exp Mol Med 2008, 40:52–58.10.3858/emm.2008.40.1.52267932118305398 Search in Google Scholar

65. Fayeda HA, Barakata BM, Elshaerb SS, Abdel-Naimc AB, Menzed ET: Antiosteoporotic activities of isoquercitrin in ovariectomized rats: Role of inhibiting hypoxia inducible factor-1 alpha. Eur J Pharmacol 2019, 865: 172785.10.1016/j.ejphar.2019.17278531712059 Search in Google Scholar

66. Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Rémésy C, Barlet JP: Rutin Inhibits Ovariectomy-Induced Osteopenia in Rats. JBMR 2000, 15:2251-2258.10.1359/jbmr.2000.15.11.225111092407 Search in Google Scholar

67. Yokoyama A, Sakakibara H, Crozier A, Kawai Y, Matsui A, Terao J, Kumazawa S, Shimoi K: Quercetin metabolites and protection against peroxynitrite-induced oxidative hepatic injury in rats. Free Radic Res 2009, 43:913-21.10.1080/1071576090313701019669999 Search in Google Scholar

68. Man X, Yang L, Liu S, Yang L, Li M, Fu Q: Arbutin promotes MC3T3-E1 mouse osteoblast precursor cell proliferation and differentiation via the Wnt/ß-catenin signaling pathway. Mol Med Rep 2019, 19:4637–4644.10.3892/mmr.2019.10125652280130957189 Search in Google Scholar

69. Prouillet C, Mazière J-C, Mazière C, Wattel A, Brazier M, Kamel S: Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 2004, 67:1307–1313.10.1016/j.bcp.2003.11.00915013846 Search in Google Scholar

70. Kanter M, Altan MF, Donmez S, Ocakci A, Kartal ME: The effects of quercetin on bone minerals, biomechanical behavior, and structure in streptozotocin-induced diabetic rats. Cell Biochem Funct 2007, 25:747–752.10.1002/cbf.139717265531 Search in Google Scholar

71. Derakhshanian H, Ghadbeigi S, Rezaian M, Bahremand A, Javanbakht MH, Golpaie A, Hosseinzadeh P, Tajik N, Dehpour AR: Quercetin improves bone strength in experimental biliary cirrhosis. Hepatol Res 2013, 43:394–400.10.1111/j.1872-034X.2012.01075.x22882531 Search in Google Scholar

72. Omori A, Yoshimura Y, Deyama Y, Suzuki K: Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. Biomed Reports 2015, 3:483–490.10.3892/br.2015.452448701826171153 Search in Google Scholar

73. Barhoma RA, Hegab II, Atef MM, El-Shamy AM: Unraveling the Role of Melatonin/ Quercetin in Attenuating the Metabolic and Bone Turnover Alternations in Iron Treated-Ovariectomized Female Rats. Med J Cairo Univ 2019, 87:2857-2870.10.21608/mjcu.2019.59320 Search in Google Scholar

74. Chen Y, Dai F, He Y, Chen Q, Xia Q, Cheng G, Lu Y, Zhang Q: Beneficial effects of hyperoside on bone metabolism in ovariectomized mice. Biomed Pharmacother 2018, 107:1175–1182.10.1016/j.biopha.2018.08.06930257331 Search in Google Scholar

75. Qi X-C, Li B, Wu W-L, Liu, H-C, Jiang Y-P: Protective effect of hyperoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Artif Cells Nanomedicine Biotechnol 2020. 48, 377–383.10.1080/21691401.2019.170985131903787 Search in Google Scholar

76. Liu L, Wang D, Qin Y, Xu M, Zhou L, Xu W, Liu X, Ye L, Yue S, Zheng Q, Li D: Astragalin Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Bone Formation in vivo. Front Endocrinol (Lausanne) 2019, 10:228.10.3389/fendo.2019.00228647698431040823 Search in Google Scholar

77. Karadeniz F, Oh JH, Lee JI, Seo Y, Kong CS: 3,5-dicaffeoyl-epi-quinic acid from Atriplex gmelinii enhances the osteoblast differentiation of bone marrow-derived human mesenchymal stromal cells via WnT/BMP signaling and suppresses adipocyte differentiation via AMPK activation. Phytomedicine 2020, 71:153225.10.1016/j.phymed.2020.15322532464299 Search in Google Scholar

eISSN:
1820-7448
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Veterinary Medicine