Acceso abierto

The in vitro anticancer effects of FS48 from salivary glands of Xenopsylla cheopis on NCI-H460 cells via its blockage of voltage-gated K+ channels


Cite

1. H. Wulff, N. A. Castle and L. A. Pardo, Voltage-gated potassium channels as therapeutic targets, Nat. Rev. Drug Discov. 8(12) (2009) 982–1001; https://doi.org/10.1038/nrd2983279017019949402 Search in Google Scholar

2. M. Bachmann, W. Li, M. J. Edwards, S. A. Ahmad, S. Patel, I. Szabo and E. Gulbins, Voltage-gated potassium channels as regulators of cell death, Front. Cell Dev. Biol. 8 (2020) Article ID 611853 (17 pages); https://doi.org/10.3389/fcell.2020.611853776797833381507 Search in Google Scholar

3. C. Ashton, S. K. Rhie, J. D. Carmichael and G. Zada, Role of KCNAB2 expression in modulating hormone secretion in somatotroph pituitary adenoma, J. Neurosurg. 134(3) (2020) 1–7; https://doi.org/10.3171/2019.12.JNS19243532109873 Search in Google Scholar

4. R. S. Herbst, D. Morgensztern and C. Boshoff, The biology and management of non-small cell lung cancer, Nature 553 (2018) 446–454; https://doi.org/10.1038/nature2518329364287 Search in Google Scholar

5. M. Lu and Y. Su, Immunotherapy in non-small cell lung cancer: The past, the present, and the future, Thorac. Cancer 10(4) (2019) 585–586; https://doi.org/10.1111/1759-7714.13012644927530821103 Search in Google Scholar

6. P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer 3 (2003) 362–374; https://doi.org/10.1038/nrc107512724734 Search in Google Scholar

7. R. R. Langley and I. J. Fidler, The seed and soil hypothesis revisited – The role of tumor-stroma interactions in metastasis to different organs, Int. J. Cancer 128(11) (2011) 2527–2535; https://doi.org/10.1002/ijc.26031307508821365651 Search in Google Scholar

8. L. L. Chen, N. Blumm, N. A. Christakis, A.-L. Barabási and T. S. Deisboeck, Cancer metastasis networks and the prediction of progression patterns, Br. J. Cancer 101(5) (2009) 749–758; https://doi.org/10.1038/sj.bjc.6605214273685119707203 Search in Google Scholar

9. K. Ganesh and J. Massagué, Targeting metastatic cancer, Nat. Med. 27(1) (2021) 34–44; https://doi.org/10.1038/s41591-020-01195-4789547533442008 Search in Google Scholar

10. R. L. Siegel, K. D. Miller and A. Jemal, Cancer statistics, 2020, CA. Cancer J. Clin. 70(1) (2020) 7–30; https://doi.org/10.3322/caac.2159031912902 Search in Google Scholar

11. Y. Zhao and A. A. Adjei, New strategies to develop new medications for lung cancer and metastasis, Cancer Metastasis Rev. 34 (2015) 265–275; https://doi.org/10.1007/s10555-015-9553-525944554 Search in Google Scholar

12. H. H. Popper, Progression and metastasis of lung cancer, Cancer Metastasis Rev. 35 (2016) 75–91; https://doi.org/10.1007/s10555-016-9618-0482186927018053 Search in Google Scholar

13. S. Kakiuchi, Y. Daigo, T. Tsunoda, S. Yano, S. Sone and Y. Nakamura, Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice., Mol. Cancer Res. 1(7) (2003) 485–499; Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12754296 Search in Google Scholar

14. L. Zhang, S. Bing, M. Dong, X. Lu and Y. Xiong, Targeting ion channels for the treatment of lung cancer, Biochim. Biophys. Acta Rev. Cancer 1876(2) (2021) Article ID 188629; https://doi.org/10.1016/j.bbcan.2021.18862934610420 Search in Google Scholar

15. S. Roger, M. Potier, C. Vandier, P. Besson and J.-Y. Le Guennec, Voltage-gated sodium channels: new targets in cancer therapy?, Curr. Pharm. Des. 12(28) (2006) 3681–3695; https://doi.org/10.2174/13816120677852204717073667 Search in Google Scholar

16. S. Roger, J. Rollin, A. Barascu, P. Besson, P.-I. Raynal, S. Iochmann, M. Lei, P. Bougnoux, Y. Gruel and J.-Y. Le Guennec, Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines, Int. J. Biochem. Cell Biol. 39(4) (2007) 774–786; https://doi.org/10.1016/j.biocel.2006.12.00717307016 Search in Google Scholar

17. L. Gillet, S. Roger, P. Besson, F. Lecaille, J. Gore, P. Bougnoux, G. Lalmanach and J.-Y. Le Guennec, Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells, J. Biol. Chem. 284(13) (2009) 8680–8691; https://doi.org/10.1074/jbc.M806891200265922719176528 Search in Google Scholar

18. L. Brisson, V. Driffort, L. Benoist, M. Poet, L. Counillon, E. Antelmi, R. Rubino, P. Besson, F. Labbal, S. Chevalier, S. J. Reshkin, J. Gore and S. Roger, NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote breast cancer cell invadopodial activity, J. Cell Sci. 126 (2013) 4835–4842; https://doi.org/10.1242/jcs.12390123902689 Search in Google Scholar

19. L. WC Chow, K.-S. Cheng, K.-L. Wong and Y.-M. Leung, Voltage-gated K+ channels promote BT-474 breast cancer cell migration, Chinese J. Cancer Res. 30(6) (2018) 613–622; https://doi.org/10.21147/j.issn.1000-9604.2018.06.06632851130700930 Search in Google Scholar

20. H. W. Park, M. S. Song, H. J. Sim, P. D. Ryu and S. Y. Lee, The role of the voltage-gated potassium channel, Kv2.1 in prostate cancer cell migration, BMB Reports 54(2) (2021) 130–135; https://doi.org/10.5483/BMBRep.2021.54.2.210790774533407994 Search in Google Scholar

21. D. Aissaoui, S. Mlayah-Bellalouna, J. Jebali, Z. Abdelkafi-Koubaa, S. Souid, W. Moslah, H. Othman, J. Luis, M. ElAyeb, N. Marrakchi, K. Essafi-Benkhadir and N. Srairi-Abid, Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides, Int. J. Biol. Macromol. 111 (2018) 1146–1155; https://doi.org/10.1016/j.ijbiomac.2018.01.14429415410 Search in Google Scholar

22. M. Spitzner, J. Ousingsawat, K. Scheidt, K. Kunzelmann and R. Schreiber, Voltage-gated K channels support proliferation of colonic carcinoma cells, FASEB J. 21 (2007) 35–44; https://doi.org/10.1096/fj.06-6200com17135369 Search in Google Scholar

23. S. Y. Choi, H.-R. Kim, P. D. Ryu and S. Y. Lee, Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCIH460, BMC Pharmacol. Toxicol. 18 (2017) Article ID 14 (9 pages); https://doi.org/10.1186/s40360-017-0118-9531915828219421 Search in Google Scholar

24. B. J. Mans, Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods, J. Innate Immun. 3(1) (2011) 41–51; https://doi.org/10.1159/00032159920980728 Search in Google Scholar

25. J. M. C. Ribeiro and B. Arcà, From sialomes to the sialoverse: An insights into salivary potion of blood-feeding insects, Adv. In Insect Phys. Chapter 2, 59–118; https://doi.org/10.1016/S0065-2806(09)37002-2 Search in Google Scholar

26. A. C. P. Sousa, M. P. J. Szabó, C. J. F. Oliveira and M. J. B. Silva, Exploring the anti-tumoral effects of tick saliva and derived components, Toxicon 102 (2015) 69–73; https://doi.org/10.1016/j.toxicon.2015.06.00126079950 Search in Google Scholar

27. B. Zhang, Z. Deng, B. Zeng, S. Yang, X. Chen, X. Xu and J. Wu, In-vitro effects of the FS50 protein from salivary glands of Xenopsylla cheopis on voltage-gated sodium channel activity and motility of MDA-MB-231 human breast cancer cells, Anticancer Drugs 29(9) (2018) 880–889; https://doi.org/10.1097/CAD.000000000000066229912729 Search in Google Scholar

28. Z. Deng, Q. Zeng, J. Tang, B. Zhang, J. Chai, J. F. Andersen, X. Chen and X. Xu, Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis, J. Biol. Chem. 296 (2021) Article ID 100670 (16 pages); https://doi.org/10.1016/j.jbc.2021.100670813132633864815 Search in Google Scholar

29. Q. Zeng, W. Lu, Z. Deng, B. Zhang, J. Wu, J. Chai, X. Chen and X. Xu, The toxin mimic FS48 from the salivary gland of Xenopsylla cheopis functions as a Kv1.3 channel-blocking immunomodulator of T cell activation, J. Biol. Chem. 298(1) (2022) Article ID 101497 (10 pages); https://doi.org/10.1016/j.jbc.2021.101497873208834919963 Search in Google Scholar

30. W. I. Jeon, P. D. Ryu and S. Y. Lee, Effects of voltage-gated K+ channel blockers in gefitinib-resistant H460 non-small cell lung cancer cells., Anticancer Res. 32(12) (2012) 5279–5284; https://www.ncbi.nlm.nih.gov/pubmed/23225427 Search in Google Scholar

31. J. Wu, H. Zhang, X. Chen, J. Chai, Y. Hu, W. Xiong, W. Lu, M. Tian, X. Chen and X. Xu, FM-CATH, A novel cathelicidin from Fejervarya multistriata shows therapeutic potential for treatment of CLP-induced sepsis, Front. Pharmacol. 12 (2021) Article ID 731056 (13 pages); https://doi.org/10.3389/fphar.2021.731056841570734483941 Search in Google Scholar

32. M. Song, S. Park, J. Park, J. Byun, H. Jin, S. Seo, P. Ryu and S. Lee, Kv3.1 and Kv3.4, are involved in cancer cell migration and invasion, Int. J. Mol. Sci. 19(4) (2018) Article ID 1061 (17 pages); https://doi.org/10.3390/ijms19041061597947929614836 Search in Google Scholar

33. K. Silver, A. Littlejohn, L. Thomas, E. Marsh and J. D. Lillich, Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling, Biochem. Pharmacol. 98(4) (2015) 614–628; https://doi.org/10.1016/j.bcp.2015.10.017465609926549367 Search in Google Scholar

34. W. K. K. Wu, G. R. Li, T. M. Wong, J. Y. Wang, L. Yu and C. H. Cho, Involvement of voltage-gated K+ and Na+ channels in gastric epithelial cell migration, Mol. Cell. Biochem. 308 (2008) 219–226; https://doi.org/10.1007/s11010-007-9631-217978865 Search in Google Scholar

35. J. N. Rao, O. Platoshyn, L. Li, X. Guo, V. A. Golovina, J. X. J. Yuan and J.-Y. Wang, Activation of K+ channels and increased migration of differentiated intestinal epithelial cells after wounding, Am. J. Physiol. Physiol. 282 (2002) C885–C898; https://doi.org/10.1152/ajpcell.00361.200111880277 Search in Google Scholar

36. S.-H. Wu, Y.-T. Hsiao, C.-L. Kuo, F.-S. Yu, S.-C. Hsu, P.-P. Wu, J.-C. Chen, T.-C. Hsia, H.-C. Liu, W.-H. Hsu and J.-G. Chung, Bufalin inhibits NCI-H460 human lung cancer cell metastasis in vitro by inhibiting MAPKs, MMPs, and NF-κB pathways, Am. J. Chin. Med. 43(6) (2015) 1247–1264; https://doi.org/10.1142/S0192415X1550071826446205 Search in Google Scholar

37. J. H. Kim, E. B. Cho, J. Lee, O. Jung, B. J. Ryu, S. H. Kim, J. Y. Cho, C. Ryou and S. Y. Lee, Emetine inhibits migration and invasion of human non-small-cell lung cancer cells via regulation of ERK and p38 signaling pathways, Chem. Biol. Interact. 242 (2015) 25–33; https://doi.org/10.1016/j.cbi.2015.08.01426332055 Search in Google Scholar

38. C. Zhang, N. B. Leighl, Y.-L. Wu and W.-Z. Zhong, Emerging therapies for non-small cell lung cancer, J. Hematol. Oncol. 12(1) (2019) 1–24; https://doi.org/10.1186/s13045-019-0731-8648258831023335 Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other