[
1. Y. Liu, Z. Jiang, X. Hou, X. Xie, J. Shi, J. Shen, Y. He, Z. Wang and N. Feng, Functional lipid polymeric nanoparticles for oral drug delivery: Rapid mucus penetration and improved cell entry and cellular transport, Nanomedicine 21 (2019) Article ID 102075; https://doi.org/10.1016/j.nano.2019.10207531377378
]Search in Google Scholar
[
2. J. Akbari, M. Saeedi, F. Ahmadi, S. M. H. Hashemi, A. Babaei, S. Yaddollahi, S. S. Rostamkalaei, K. Asare-Addo and A. Nokhodchi, Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration, Pharm Dev. Technol. 27(5) (2022) 525–544; https://doi.org/10.1080/10837450.2022.208455435635506
]Search in Google Scholar
[
3. Y. R. Neupane, M. D. Sabir, N. Ahmad, M. Ali and K. Kohli, Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies, Nano-technology 24(41) (2013) Article ID 415102; https://doi.org/10.1088/0957-4484/24/41/41510224061410
]Search in Google Scholar
[
4. Q. Xia, A. Saupe, R. H. Müller and E. B. Souto, Nanostrucured lipid carriers as novel carrier for sunscreen formulations, Int. J. Cosmet. Sci. 29(6) (2007) 473–482; https://doi.org/10.1111/j.1468-2494.2007.00410.x18489386
]Search in Google Scholar
[
5. R. Augustine, A. A. Mamun, A. Hasan, S. A. Salam, R. Chandrasekaran, R. Ahmed and A. S. Thakor, Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis, Adv. Colloid Interface Sci. 294 (2021) Article ID 102457; https://doi.org/10.1016/j.cis.2021.10245734144344
]Search in Google Scholar
[
6. H. Liu, Z. Cai, F. Wang, L. Hong, L. Deng, J. Zhong, Z. Wang and W. Cui, Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora, Adv. Sci. (Weinheim) 8(18) (2021) e2101619 (12 pages); https://doi.org/10.1002/advs.202101619845627334292669
]Search in Google Scholar
[
7. X. Zheng, C. Qiu, J. Long, A. Jiao, X. Xu, Z. Jin and J. Wang, Preparation and characterization of porous starch/beta-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption, Food Biosci. 41 (2021) Article ID 101081; https://doi.org/10.1016/j.fbio.2021.101081
]Search in Google Scholar
[
8. M. Frühbauerová, L. Červenka, T. Hájek, M. Pouzar and J. Palarčík, Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding, Food Chem. 377 (2022) Article ID 131968; https://doi.org/10.1016/j.foodchem.2021.13196834995960
]Search in Google Scholar
[
9. T. Peng, Y. Wang, T. Yang, F. Wang, J. Luo and Y. Zhang, Physiological and biochemical responses, and comparative transcriptome profiling of two Angelica sinensis cultivars under enhanced ultra-violet-B radiation, Front Plant. Sci. 12 (2021) Article ID 805407 (18 pages); https://doi.org/10.3389/fpls.2021.805407871892034975996
]Search in Google Scholar
[
10. Y. Zhang, Z. Li, K. Zhang, G. Yang, Z. Wang, J. Zhao, R. Hu and N. Feng, Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles, Int. J. Pharm. 511(1) (2016) 57–64; https://doi.org/10.1016/j.ijpharm.2016.06.13127374194
]Search in Google Scholar
[
11. R. F. S. Gonçalves, J. T. Martins, L. Abrunhosa, J. Baixinho, A. A. Matias, A. A. Vicente and A. C. Pinheiro, Lipid-based nanostructures as a strategy to enhance curcumin bioaccessibility: Behavior under digestion and cytotoxicity assessment, Food Res. Int. 143 (2021) Article ID 110278; https://doi.org/10.1016/j.foodres.2021.11027833992378
]Search in Google Scholar
[
12. E. T. Rodrigues, S. F. Nascimento, C. L. Pires, L. P. Godinho, C. Churro, M. J. Moreno and M. A. Pardal, Determination of intestinal absorption of the paralytic shellfish toxin GTX-5 using the Caco-2 human cell model, Environ. Sci. Pollut Res. Int. 28(47) (2021) 67256–67266; https://doi.org/10.1007/s11356-021-15342-y34247356
]Search in Google Scholar
[
13. S. Youhanna and V. M. Lauschke, The past, present and future of intestinal in vitro cell systems for drug absorption studies, J. Pharm. Sci. 110(1) (2021) 50–65; https://doi.org10.1016/j.xphs.2020.07.001
]Search in Google Scholar
[
14. R. Hu, S. Liu, G. Anwaier, Q. Wang, W. Shen, Q. Shen and R. Qi, Formulation and intestinal absorption of naringenin loaded nanostructured lipid carrier and its inhibitory effects on nonalcoholic fatty liver disease, Nanomedicine 32 (2021) Article ID 102310; https://doi.org/10.1016/j.nano.2020.10231033184021
]Search in Google Scholar
[
15. Q. Yu, X. Hu, Y. Ma, Y. Xie, Y. Lu, J. Qi, L. Xiang, F. Li and W. Wu, Lipids-based nanostructured lipid carriers (NLCs) for improved oral bioavailability of sirolimus, Drug Deliv. 23(4) (2016) 1469–1475; https://doi.org/10.3109/10717544.2016.115374427187522
]Search in Google Scholar
[
16. J. Akbari, M. Saeedi, F. Ahmadi, S. Hashemi, A. Babaei, S. Yaddollahi, S. S. Rostamkalaei, K. Asare-Addo and A. Nokhodchi, Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration, Pharm. Dev. Technol. 27(5) (2022) 525–544; https://doi.org/10.1080/10837450.2022.208455435635506
]Search in Google Scholar
[
17. Z. Cheng, Y. Li, K. Wang, X. Zhu, P. Tharkar, W. Shu, T. Zhang, S. Zeng, L. Zhu, M. Murray, W. Chrzanowski and F. Zhou, Compritol solid lipid nanoparticle formulations enhance the protective effect of betulinic acid derivatives in human Müller cells against oxidative injury, Exp. Eye Res. 215 (2022) Article ID 108906; https://doi.org/10.1016/j.exer.2021.10890634953864
]Search in Google Scholar
[
18. V. Pokharkar, A. Patil-Gadhe and G. Kaur, Physicochemical and pharmacokinetic evaluation of rosuvastatin loaded nanostructured lipid carriers: influence of long- and medium-chain fatty acid mixture, J. Pharm. Investig. 48 (2018) 465–476; https://doi.org/10.1007/s40005-017-0342-8
]Search in Google Scholar
[
19. H. Shete, S. Chatterjee, A. De and V. Patravale, Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in vitro anticancer efficacy studies, Int. J. Pharm. 454(1) (2013) 584–592; https://doi.org/10.1016/j.ijpharm.2013.03.03623535344
]Search in Google Scholar
[
20. P. Ganesan, P. Ramalingam, G. Karthivashan, Y. T. Ko and D. K. Choi, Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases, Int. J. Nanomedicine 13 (2018) 1569–1583; https://doi.org/10.2147/IJN.S155593585881929588585
]Search in Google Scholar
[
21. M. Elmowafy, K. Shalaby, H. M. Ali, N. K. Alruwaili, A. Salama, M. F. Ibrahim, M. A. Akl and T. A. Ahmed, Impact of nanostructured lipid carriers on dapsone delivery to the skin: in vitro and in vivo studies, Int. J. Pharm. 572 (2019) Article ID 118781; https://doi.org/10.1016/j.ijpharm.2019.11878131715347
]Search in Google Scholar
[
22. S. Haddadzadegan, F. Dorkoosh and A. Bernkop-Schnürch, Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers, Adv. Drug Deliv. Rev. 182 (2022) Article ID 114097 (26 pages); https://doi.org/10.1016/j.addr.2021.11409734999121
]Search in Google Scholar
[
23. Y. Zhang, Z. Li, K. Zhang, G. Yang, Z. Wang, J. Zhao, R. Hu and N. Feng, Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid as compared with conventional solid lipid nanoparticles, Int. J. Pharm. 511(1) (2016) 57–64; https://doi.org/10.1016/j.ijpharm.2016.06.13127374194
]Search in Google Scholar
[
24. L. Zhou, Y. Chen, Z. Zhang, J. He, M. Du and Q. Wu, Preparation of tripterine nanostructured lipid carriers and their absorption in rat intestine, Pharmazie 67(4) (2012) 304–310; https://doi.org/10.1691/ph.2012.1108
]Search in Google Scholar
[
25. H. S. Rahman, A. Rasedee, H. H. Othman, M. S. Chartrand, F. Namvar, S. K. Yeap, N. Abdul Samad, R. J. Andas, N. Muhammad Nadzri, T. Anasamy, K. B. Ng and C. W. How, Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model, Biomed. Res. Int. 2014 (2014) Article ID 563930 (15 pages); https://doi.org/10.1155/2014/563930417292425276798
]Search in Google Scholar
[
26. J. Y. Fang, C. L. Fang, C. H. Liu and Y. H. Su, Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm. 70(2) (2008) 633–640; https://doi.org/10.1016/j.ejpb.2008.05.00818577447
]Search in Google Scholar
[
27. L. P. Mendes, J. M. F. Delgado, A. D. A. Costa, M. S. Vieira, P. L. Benfica, E. M. Lima and M. C. Valadares, Biodegradable nanoparticles designed for drug delivery: the number of nanoparticles impacts on cytotoxicity, Toxicol. in Vitro 29(6) (2015) 1268–1274; https://doi.org/10.1016/j.tiv.2014.12.02125596133
]Search in Google Scholar
[
28. N. V. Shah, A. K. Seth, R. Balaraman, C. J. Aundhia, R. A. Maheshwari and G. R. Parmar, Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study, J. Adv. Res. 7(3) (2016) 423–434; https://doi.org/10.1016/j.jare.2016.03.002485683627222747
]Search in Google Scholar
[
29. A. Beloqui, M. Á. Solinís, A. R. Gascón, A. del Pozo-Rodríguez, A. des Rieux and V. Préat, Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier, J. Control. Release 166(2) (2013) 115–123; https://doi.org/10.1016/j.jconrel.2012.12.02123266764
]Search in Google Scholar
[
30. A. Ali Khan, J. Mudassir, N. Mohtar and Y. Darwis, Advanced drug delivery to the lymphatic system: lipid-based nanoformulations, Int. J. Nanomedicine 8(1) (2013) 2733–2744; https://doi.org/10.2147/IJN.S41521373220123926431
]Search in Google Scholar
[
31. X. Zhou, X. Zhang, Y. Ye, T. Zhang, H. Wang, Z. Ma and B. Wu, Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption, Int. J. Pharm. 479(2) (2015) 391–398; https://doi.org/10.1016/j.ijpharm.2014.12.06825556104
]Search in Google Scholar
[
32. R. Ghadi and N. Dand, BCS class IV drugs: Highly notorious candidates for formulation development, J. Control. Release 248 (2017) 71–95; https://doi.org/10.1016/j.jconrel.2017.01.01428088572
]Search in Google Scholar
[
33. V. Makwana, R. Jain, K. Patel, M. Nivsarkar and A. Joshi, Solid lipid nanoparticles (SLN) of efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach, Int. J. Pharm. 495(1) (2015) 439–446; https://doi.org/10.1016/j.ijpharm.2015.09.01426367780
]Search in Google Scholar