1. bookVolumen 71 (2021): Edición 1 (March 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Investigation of design space for freeze-drying injectable ibuprofen using response surface methodology

Publicado en línea: 20 Jul 2020
Volumen & Edición: Volumen 71 (2021) - Edición 1 (March 2021)
Páginas: 81 - 98
Aceptado: 05 Apr 2020
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. A. R. Fernandes, N. R. Ferreira, J. F. Fangueiro, A. C. Santos, F. J. Veiga, C. Cabral, A. M. Silva and E. B. Souto, Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs, Saudi Pharm. J.25 (2017) 1117–1124; https://doi.org/10.1016/j.jsps.2017.07.00410.1016/j.jsps.2017.07.004611111230166898Search in Google Scholar

2. J. Nerurkar, J. W. Beach, M. O. Park and H. W. Jun, Solubility of (±)-ibuprofen and S (+)-ibuprofen in the presence of cosolvents and cyclodextrins, Pharm. Dev. Technol.10 (2005) 413–421; https://doi.org/10.1081/PDT-5444610.1081/PDT-54446Search in Google Scholar

3. K. Stoyanova, Z. Vinarov and S. Tcholakova, Improving ibuprofen solubility by surfactant-facilitated self-assembly into mixed micelles, J. Drug. Deliv. Sci. Tec.36 (2016) 208–215; https://doi.org/10.1016/j.jddst.2016.10.01110.1016/j.jddst.2016.10.011Search in Google Scholar

4. M. Preskar, T. Vrbanec, F. Vrečer, P. Šket, J. Plavec and M. Gašperlin, Solubilization of ibuprofen for freeze dried parenteral dosage forms, Acta Pharm.69 (2019) 17–32; https://doi.org/10.2478/acph-2019-000910.2478/acph-2019-000931259719Search in Google Scholar

5. K. T. Savjani, A. Gajjar and J. K. Savjani, Drug solubility: Importance and enhancement techniques, ISRN Pharm.12 (2012) Article ID 195727; http://dx.doi.org/10.5402/2012/19572710.5402/2012/195727339948322830056Search in Google Scholar

6. S. M. Patel and M. J. Pikal, Lyophilization process design space, J. Pharm. Sci.102 (2013) 3883–3887; https://doi.org/10.1002/jps.2370310.1002/jps.2370323946165Search in Google Scholar

7. S. Roy, C. Ruitberg and A. Sethuraman, Troubleshooting during the manufacture of lyophilized drug product – Being prepared for the unexpected, Am. Pharm. Rev.15 (2012).Search in Google Scholar

8. T. R. M. De Beer, M. Wiggenhorn, A. Hawe, J. C. Kasper, A. Almeida, T. Quinten, W. Friess, G. Winter, C. Vervaet and J. P. Remon, Optimization of a pharmaceutical freeze-dried product and its process using experimental design approach and innovative process analyzers, Talanta83 (2011) 1623–1633; https://doi.org/10.1016/j.talanta.2010.11.05110.1016/j.talanta.2010.11.05121238761Search in Google Scholar

9. K. Naelepaa, P. Veski, H. Gjelstrup, J. Rantanen and P. Bertelsen, Building quality into a coating process, Pharm. Dev. Technol.15 (2010) 35–45; https://doi.org/10.3109/1083745090288237710.3109/1083745090288237719694502Search in Google Scholar

10. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals and Human use, ICH Harmonised Tripartite Guidelines: Pharmaceutical development Q8 (R2), Current Step 4 version, August 2009; https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf; access date, September 20, 2018.Search in Google Scholar

11. V. K. Mourya, Y. Choudhari and M. Padame, Quality by Design: Impact of product variables and their interaction on the particle size in lyophilization of sodium fluoride, Soft Nanosci. Let.6 (2016) 1–10; http://dx.doi.org/10.4236/snl.2016.6100110.4236/snl.2016.61001Search in Google Scholar

12. J. Sundaram, Y-H. M. Shay, S. U. Sane and C. C. Hsu, Design space development for lyophilization using Doe and process modelling, Biopharm. Int.23 (2010) 26–36;Search in Google Scholar

13. V. R. Koganti, E. Y. Shalaev, M. R. Berry, T. Osterberg, M. Youssef, D. N. Hiebert, F. A. Kanka, M. Nolan, R. Barrett, G. Scalzo, G. Fitzpatrick, N. Fitzgibbon, S. Luthra and L. Zhang, Investigation of design space for freeze-drying: Use of modeling for primary drying segment of a freeze-drying cycle, AAPS PharmSciTech. 12 (2011) 854–861; https://doi.org/10.1208/s12249-011-9645-710.1208/s12249-011-9645-7316726721710335Search in Google Scholar

14. A. G. Martinez, B. E. Rodrigez, A. P. Roca and A. M. Ruiz, Intravenous ibuprofen for treatment of post-operative pain: A multicenter, double blind, placebo-controlled, randomized clinical trial, PloS One11 (2016) 1–16; https://doi.org/10.1371/journal.pone.015400410.1371/journal.pone.0154004485949327152748Search in Google Scholar

15. D. Awotwe-Otto, C. Agarabi and M. A. Khan, An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations, J. Pharm. Sci.103 (2014) 2042–2052; https://doi.org/10.1002/jps.2400510.1002/jps.2400524840395Search in Google Scholar

16. S. M. Patel, S. L. Nail, M. J. Pikal, R. Geidobler, G. Winter, A. Hawe, J. Davagnino and S. R. Gupta, Lyophilized drug product cake appearance: What is acceptable, J. Pharm. Sci.106 (2017) 1706–1721; http://dx.doi.org/10.1016/j.xphs.2017.03.01410.1016/j.xphs.2017.03.01428341598Search in Google Scholar

17. J. C. Kasper and W. Friess, The freezing step in lyophilisation: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals, Eur. J. Pharmaceut. Biopharmaceut.78 (2011) 248–263; http://doi.org/10.1016/j.ejpb.2011.03.01010.1016/j.ejpb.2011.03.01021426937Search in Google Scholar

18. E. Meister, A significant comparison between collapse and glass transition temperatures, Eur. Pharm. Rev.13 (2008) 73–79.Search in Google Scholar

19. J. Horn and W. Friess, Detection of collapse and crystallization of saccharide, protein and mannitol formulations by optical fibers in lyophilization, Front. Chem.6 (2018) 1–9; https://doi.org/10.3389/fchem.2018.0000410.3389/fchem.2018.00004579077529435445Search in Google Scholar

20. G. Assegehegn, E. B.- de la Fuente, J. M. Franco and C. Gallegos, The importance of understanding the freezing step and its impact on freeze-drying process performance, J. Pharm. Sci.108 (2019) 1378–1395; https://doi.org/10.1016/j.xphs.2018.11.03910.1016/j.xphs.2018.11.03930529167Search in Google Scholar

21. S. M. Patel, C. Bhugra and M. J. Pikal, Reduced Pressure Ice Fog technique for controlled ice nucleation during freeze-drying, AAPS PharmSciTech10 (2009) 1406–1411; https://doi.org/10.1208/s12249-009-9338-710.1208/s12249-009-9338-7279960419937284Search in Google Scholar

22. W. Abdelwahed, G. Degober and H. Fessi, Freeze-drying of nanocapsules: Impact of annealing on the drying process, Int. J. Pharm.324 (2006) 74–82; https://doi.org/10.016/j.ijpharm.2006.06.047Search in Google Scholar

23. M. S. Arshad, Application of through-vial impedance spectroscopy as a novel process analytical technology for freeze drying, Phd Thesis, Leicester School of Pharmacy, De Montfort University, 2014; https://www.dora.dmu.ac.uk/xmlui/bitstream/handle/2086/10407/PhD%20Thesis%20So-hail%20Muhammad%20Arshad%20After%20corrections%20KW_JB_WS_GS%20approved.pdf;sequence=1, access date August 2, 2018.Search in Google Scholar

24. G. Smith, M. S. Arshad, E. Polygalov and I. Ermolina, Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: The impact of annealing hold time and temperature on the primary drying rate, J. Pharm. Sci.103 (2014) 1799–1810; https://doi.org/10.1002/jps.2398210.1002/jps.2398224756948Search in Google Scholar

25. P. Fonte, S. Reis and B. Sarmento, Facts and evidences on the lyophilisation of polymeric nanoparticles for drug delivery, J. Control. Release225 (2016) 75–86; https://doi.org/10.1016/j.jconrel.2016.01.03410.1016/j.jconrel.2016.01.03426805517Search in Google Scholar

26. X. Tang and M. J. Pikal, Design of freeze-drying processes for pharmaceuticals: practical advice, Pharm. Res.21 (2004) 191–200; https://doi.org/10.1023/b:pham.0000016234.73023.7510.1023/B:PHAM.0000016234.73023.75Search in Google Scholar

27. X. Lu and M. J. Pikal, Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: The impact of annealing on dry layer resistance to mass transfer and cake structure, Pharm. Dev. Technol.9 (2004) 85–95; https://doi.org/10.1081/PDT-12002742110.1081/PDT-120027421Search in Google Scholar

28. L. Rey and J. C. May, Freeze Drying/Lyophilization of Pharmaceutical and Biological Products, 3rd ed., Informa Healthcare, New York, London 2011.Search in Google Scholar

29. G. Smith, E. Polygalov, M. S. Arshad, T. Page, J. Taylor and I. Ermolina, An impedance-based process analytical technology for monitoring the lyophilisation process, Int. J. Pharm.449 (2013) 72–83; http://dx.doi.org/10.1016/j.ijpharm,2013.03.060Search in Google Scholar

30. J. Frost, Multiple Regression Analysis: Use Adjusted R-Squared and Predicted R-Squared to Include the Correct Number of Variables; https://statisticsbyjim.com/regression/interpret-adjusted-r-squared-predicted-r-squared-regression/; access date November 11, 2019Search in Google Scholar

31. A. Hayes, R-Squared Definition, Updated May 8, 2019 https://www.investopedia.com/terms/r/r-squared.asp; access date November 11, 2019Search in Google Scholar

32. S. Raissi and R.-E. Farsani, Statistical process optimization through multi-response surface methodology, Int. J. Math.Comput. Sci.3 (2009) 197–201.Search in Google Scholar

33. D. Bas and I. H. Boyaci, Modelling and optimization I: Usability of response surface methodology, J. Food Eng.78 (2007) 836–845; https://doi.org/10.1016/j.jfoodeng.2005.11.02410.1016/j.jfoodeng.2005.11.024Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo