1. bookVolumen 71 (2021): Edición 1 (March 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Improved 11α-hydroxycanrenone production by modification of cytochrome P450 monooxygenase gene in Aspergillus ochraceus

Publicado en línea: 20 Jul 2020
Volumen & Edición: Volumen 71 (2021) - Edición 1 (March 2021)
Páginas: 99 - 114
Aceptado: 13 Mar 2020
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. L. O. L. Ríos, J. M. Luengo and J. M. Fernández-Cañón, Steroid 11-alpha-hydroxylation by the fungi Aspergillus nidulans and Aspergillus ochraceus, Methods Mol. Biol. 1645 (2017) 271–287; https://doi.org/10.1007/978-1-4939-7183-1_1910.1007/978-1-4939-7183-1_1928710635Search in Google Scholar

2. L. Jia, J. Dong, R. Wang, S. Mao, F. Lu, S. Singh, Z. Wang and X. Liu, Identification and characterization of the steroid 15α-hydroxylase gene from Penicillium raistrickii, Appl. Microbiol. Biotechnol. 101 (2017) 6409–6418; https://doi.org/10.1007/s00253-017-8377-310.1007/s00253-017-8377-328664322Search in Google Scholar

3. S. Huang, J. Xie, J. Cui, L. Liu, Y. Liang, Y. Liu and Q. Xiao, Comparative investigation of binding interactions between three steroidal compounds and human serum albumin: Multispectroscopic and molecular modeling techniques, Steroids128 (2017) 136–146; https://doi.org/10.1016/j.steroids.2017.09.01110.1016/j.steroids.2017.09.01128962852Search in Google Scholar

4. X. Wang, J. Feng, D. Zhang, Q. Wu, D. Zhu and Y. Ma, Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids, Appl. Microbiol. Biotechnol. 101 (2017) 6049–6060; https://doi.org/10.1007/s00253-017-8378-210.1007/s00253-017-8378-228634849Search in Google Scholar

5. S. Mao, X. Wang, Z. Ge, A. Su, L. Zhang, Y. Li, X. Liu and F. Lu, Microbial hydroxylation of steroids by Penicillium decumbens, J. Mol. Catal. B-Enzym. 133 (2017) S346–S351; https://doi.org/10.1016/j.molcatb.2017.02.00710.1016/j.molcatb.2017.02.007Search in Google Scholar

6. E. Kozłowska, N. Hoc, J. Sycz, M. Urbaniak, M. Dymarska, J. Grzeszczuk, E. Kostrzewa-Susłow, L. Stępień, E. Pląskowska and T. Janeczko, Biotransformation of steroids by entomopathogenic strains of Isaria farinose, Microb. Cell Fact. 17 (2018) 71; https://doi.org/10.1186/s12934-018-0920-010.1186/s12934-018-0920-0594876929753319Search in Google Scholar

7. A. Świzdor, A. Panek, P. Ś. Ostrowska, Metabolic fate of pregnene-based steroids in the lactonization pathway of multifunctional strain Penicillium lanosocoeruleum, Microb. Cell Fact. 17 (2018) 100; https://doi.org/10.1186/s12934-018-0948-110.1186/s12934-018-0948-1601923529940969Search in Google Scholar

8. C. Yarnold, J. M. Bainbridge, H. S. Boehm, B. Mark, C. Stephen, D. Hervé, D. L. Raffaella, G. Paul, H. Estelle, J. Jörn, L. Amedeo, M. Mirco, R. Carlo, S. Andreas, S. Suganthan, S. Sakthi, S. Giorgio, T. Paolo and W. David, Steroidal mineralocorticoid receptor antagonists: synthesis and biology, ChemistrySelect. 2 (2017) 175–189; https://doi.org/10.1002/slct.20160174410.1002/slct.201601744Search in Google Scholar

9. P. Rossignol, N. Girerd, G. Bakris, O. Vardeny, B. Claggett, J. J. V. McMurray, K. Swedberg, H. Krum, D. J. van Veldhuisen, H. Shi, S. Spanyers, J. Vincent, R. Fay, Z. Lamiral, S. D. Solomon, F. Zannad and B. Pitt, Impact of eplerenone on cardiovascular outcomes in heart failure patients with hypokalaemia, Eur. J. Heart Fail. 19 (2017) 792–799; https://doi.org/10.1002/ejhf.68810.1002/ejhf.68827868385Search in Google Scholar

10. J. A. Delyani, R. Rocha, C. S. Cook, D. S. Tobert, S. Levin, B. Roniker, D. L. Workman, Y. L. Sing and B. Whelihan, Eplerenone: a selective aldosterone receptor antagonist (SARA), Cardiovasc. Drug Rev. 19 (2001) 185–200; https://doi.org/10.1111/j.1527-3466.2001.tb00064.x10.1111/j.1527-3466.2001.tb00064.x11607037Search in Google Scholar

11. M. A. Tantawy, M. S. Nafie, G. A. Elmegeed and I. A. I. Ali, Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs, Bioorg. Chem. 73 (2017) 128–146; https://doi.org/10.1016/j.bioorg.2017.06.00610.1016/j.bioorg.2017.06.00628668650Search in Google Scholar

12. T. S. Tam, M. H. Wu, S. C. Masson, M. P. Tsang, S. N. Stabler, A. Kinkade, A. Tung and A. M. Tejani, Eplerenone for hypertension, Cochrane Database Syst. Rev. 2 (2017) CD008996; https://doi.org/10.1002/14651858.CD008996.pub2.10.1002/14651858.CD008996.pub2646470128245343Search in Google Scholar

13. M. Boehm, N. Arnold, A. Braithwaite, J. Pickworth, C. Lu, T. Novoyatleva, D. G. Kiely, F. Grim-minger, H. A. Ghofrani, N. Weissmann, W. Seeger, A. Lawrie, R. T. Schermuly and B. Kojonazarov, Eplerenone attenuates pathological pulmonary vascular rather than right ventricular remodeling in pulmonary arterial hypertension, BMC Pulm. Med. 18 (2018) 41; https://doi.org/10.1186/s12890-018-0604-x10.1186/s12890-018-0604-x583309729499691Search in Google Scholar

14. J. P. Ferreira, K. Duarte, J. J. V. McMurra, B. Pitt, D. J. van Veldhuisen, J. Vincent, T. Ahmad, J. Tromp, P. Rossignol and F. Zannad, Data-driven approach to identify subgroups of heart failure with reduced ejection fraction patients with different prognoses and aldosterone antagonist response patterns, Circ-Heart. Fail. 11 (2018) e004926; https://doi.org/10.1161/CIRCHEARTFAILURE.118.00492610.1161/CIRCHEARTFAILURE.118.00492629997240Search in Google Scholar

15. J. S. NG, P. T. Wang, J. A. Baez, C. Liu, D. K. Anderson, J. P. Lawson, D. Erb, J. Wieczorek, G. Mucciariello, F. Vanzanella, S. A. Kunda, L. J. Letendre, M. J. Pozzo, Y. L. Sing and E. E. Yonan, Processes for Preparation of 9,11-epoxy Steroids and Intermediates Useful therein, U. S. Pat. 7,112,669 B2, 26 Aug 2003.Search in Google Scholar

16. I. Dams, A. Białońska, P. Cmoch, M. Krupa, A. Pietraszek, A. Ostaszewska and M. Chodyński, Synthesis and physicochemical characterization of the process-related impurities of eplerenone, an antihypertensive drug, Molecules. 22 (2017) E1354; https://doi.org/10.3390/molecules2208135410.3390/molecules22081354615235328809817Search in Google Scholar

17. D. M. Huang, T. Z. Zhang, F. J. Cui, W. J. Sun, L. M. Zhao, M. Y. Yang and Y. J. Wang, Simultaneous identification and quantification of canrenone and 11-α-hydroxy-canrenone by LC-MS and HPLCUVD, J. Biomed. Biotechnol. 2011 (2011) 917232; https://doi.org/10.1155/2011/91723210.1155/2011/917232323881022203787Search in Google Scholar

18. P. Durairaj, J. S. Hur and H. Yun, Versatile biocatalysis of fungal cytochrome P450 monooxygenases, Microb. Cell Fact. 15 (2016) 125; https://doi.org/10.1186/s12934-016-0523-610.1186/s12934-016-0523-6495076927431996Search in Google Scholar

19. V. V. Kollerov, A. A. Shutov, A. Kazantsev and M. V. Donova, Biocatalytic modifications of pregnenolone by selected filamentous fungi, Biocatal. Biotransfor. 1 (2019) 1–12; https://doi.org/10.1080/10242422.2018.154923710.1080/10242422.2018.1549237Search in Google Scholar

20. G. D. Saratale, R. P. Humnabadkar and S. P. Govindwar, Study of mixed function oxidase system in Aspergillus ochraceus (NCIM 1146), Indian J. Microbiol. 47 (2007) 304–309; https://doi.org/10.1007/s12088-007-0056-010.1007/s12088-007-0056-0345004023100682Search in Google Scholar

21. Rédei and P. George, Encyclopedia of Genetics, Genomics, Proteomics and Informatics, Springer, Dordrecht, Berlin 2008, pp. 1087–1087.Search in Google Scholar

22. Q. Gao, Y. Qiao, Y. Shen, M. Wang, X. Wang and Y. Liu, Screening for strains with 11α-hydroxylase activity for 17α-hydroxy progesterone biotransformation, Steroids124 (2017) 67–71; https://doi.org/10.1016/j.steroids.2017.05.00910.1016/j.steroids.2017.05.00928533033Search in Google Scholar

23. M. K. Refai, N. H. Aziz, F. El-Far and A. A. Hassan, Detection of ochratoxin produced by A. ochraceus in feedstuffs and its control by γ radiation, Appl. Radiat. Isot. 47 (1996) 617–621; https://doi.org/10.1016/0969-8043(96)00022-X10.1016/0969-8043(96)00022-XSearch in Google Scholar

24. D. Sun, L. Wang, X. Mao, M. Fei, Y. Chen, M. Shen and J. Qiu, Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli, Biotechnol. Lett. 41 (2019) 293–303; https://doi.org/10.1007/s10529-018-02639-110.1007/s10529-018-02639-1Search in Google Scholar

25. International Conference on Applied Biotechnology, Engineering of Industrial Aspergillus ochraceus Strains for Improved Steroid 11α-Hydroxylation Efficiency via Overexpression of the 11α-Hydroxylase Gene CYP68J5, November 2016; https://link.springer.com/chapter/10.1007/978-981-10-4801-2_21; last access date October 8, 2017Search in Google Scholar

26. I. Weyda, L. Yang, J. Vang, B. K. Ahring, M. Lübeck and P. S. Lübeck, A comparison of agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius, J. Microbiol. Methods135 (2017) 26–34; https://doi.org/10.1016/j.mimet.2017.01.01510.1016/j.mimet.2017.01.015Search in Google Scholar

27. R. Wang, L. Zhang, Z. Zhang and Y. Tian, Comparison of ESI-and APCI-LC-MS/MS methods: a case study of levonorgestrel in human plasma, J. Pharm. Anal. 6 (2016) 356–362; https://doi.org/10.1016/j.jpha.2016.03.00610.1016/j.jpha.2016.03.006Search in Google Scholar

28. S. Bolten, R. Clayton, A. Easton, L. Engel, D. Messing, J. S. Ng, B. Reitz, M. C. Walker and P. T. Wang, Aspergillus ochraceus 11 alpha hydroxylase and oxidoreductase, U.S. Pat. 20,040,900,856, 1 Jun 2006.Search in Google Scholar

29. T. Du Toit, M. A. Stander and A. C. Swart, A high-throughput UPC2-MS/MS method for the separation and quantification of C19 and C21 steroids and their C11-oxy steroid metabolites in the classical, alternative, backdoor and 11OHA4 steroid pathways, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1080 (2018) 71–81; https://doi.org/10.1016/j.jchromb.2018.02.02310.1016/j.jchromb.2018.02.023Search in Google Scholar

30. J. Y. Houng, W. P. Chiang, K. C. Chen and C. Tiu, 11α-Hydroxylation of progesterone in biphasic media using alginate-entrapped Aspergillus ochraceus gel beads coated with polyurea, Enzyme Microb. Technol. 16 (1994) 485–491; https://doi.org/10.1016/0141-0229(94)90018-310.1016/0141-0229(94)90018-3Search in Google Scholar

31. S. Rong, J. Wang, Q. Li and S. Guan, The enhanced production of 11α-hydroxyandrosta-1,4-diene-3,17-dione based on the application of organic silica hollow spheres in the biotransformation of β-sitosterol, J. Chem. Technol. Biot. 92 (2017) 69–75; https://doi.org/10.1002/jctb.498310.1002/jctb.4983Search in Google Scholar

32. R. Wang, P. Sui, X. Hou, T. Cao, L. Jia, F. Lu, S. Singh and Z. Wang, Cloning and identification of a novel steroid 11α-hydroxylase gene from Absidia coerulea, J. Steroid Biochem. Mol. Biol. 171 (2017) 254–161; https://doi.org/10.1016/j.jsbmb.2017.04.00610.1016/j.jsbmb.2017.04.00628428022Search in Google Scholar

33. S. Petrič, T. Hakki, R. Bernhardt, D. Zigon and B. Crešnar, Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application, J. Biotechnol. 150 (2010) 428–437; https://doi.org/10.1016/j.jbiotec.2010.09.92810.1016/j.jbiotec.2010.09.92820850485Search in Google Scholar

34. C. M. Hull, A. G. S. Warrilow, N. J. Rolley, C. L. Price, I. S. Donnison, D. E. Kelly and S. L. Kelly, Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases, Biotechnol. Biofuels10 (2017) 226; https://doi.org/10.1186/s13068-017-0904-z10.1186/s13068-017-0904-z562247429021826Search in Google Scholar

35. A. W. Munro, K. J. Mclean, J. L. Grant and T. M. Makris, Structure and function of the cytochrome P450 peroxygenase enzymes, Biochem. Soc. Trans. 46 (2018) 183–196; https://doi.org/10.1042/BST2017021810.1042/BST20170218581866929432141Search in Google Scholar

36. P. Córdova, A-M. Gonzalez, D. R. Nelson, M. S. Gutiérrez, M. Baeza, V. Cifuentes and J. Alcaíno, Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous, BMC Genomics18 (2017) 540; https://doi.org/10.1186/s12864-017-3942-910.1186/s12864-017-3942-9551633228724407Search in Google Scholar

37. G. Reguera, Biological electron transport goes the extra mile, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 5632–5634; https://doi.org/10.1073/pnas.180658011510.1073/pnas.1806580115598455129769327Search in Google Scholar

38. X. Han, A. Chakrabortti, J. Zhu, Z. X. Lian and J. Li, Sequencing and functional annotation of the whole genome of the filamentous fungus Aspergillus westerdijkiae, BMC Genomics17 (2016) 633; https://doi.org/10.1186/s12864-016-2974-x10.1186/s12864-016-2974-x498618327527502Search in Google Scholar

39. K. Tanuja, K. Hemalatha, R. Karuna and B. Sashidhar Rao, Effect of various surfactants (cationic, anionic and non-ionic) on the growth of Aspergillus parasiticus (NRRL 2999) in relation to aflatoxin production, Mycotoxin Res. 26 (2010) 155–170; https://doi.org/10.1007/s12550-010-0050-y10.1007/s12550-010-0050-y23605380Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo