1. bookVolumen 69 (2019): Edición 2 (June 2019)
Detalles de la revista
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Acceso abierto

Core-shell nanofibers as drug delivery systems

Publicado en línea: 28 Mar 2019
Volumen & Edición: Volumen 69 (2019) - Edición 2 (June 2019)
Páginas: 131 - 153
Aceptado: 04 Nov 2018
Detalles de la revista
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año

1. J. Pelipenko, P. Kocbek and J. Kristl, Critical attributes of nanofibers: preparation, drug loading and tissue regeneration, Int. J. Pharm. 1–2 (2015) 57–74; https://doi.org/10.1016/j.ijpharm.2015.02.04310.1016/j.ijpharm.2015.02.04325701683Search in Google Scholar

2. N. Bhardwaj and S. C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325–347; https://doi.org/10.1016/j.biotechadv.2010.01.00410.1016/j.biotechadv.2010.01.00420100560Search in Google Scholar

3. Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff and A. Greiner, Compound core–shell polymer nanofibers by co-electrospinning, Adv. Mater. 15 (2003) 1929–1932; https://doi.org/10.1002/adma.20030513610.1002/adma.200305136Search in Google Scholar

4. X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang and X. Jing, Preparation of core-sheath composite nanofibers by emulsion electrospinning, Macromol. Rapid Commun. 27 (2006) 1637–1642; https://doi.org/10.1002/marc.20060038410.1002/marc.200600384Search in Google Scholar

5. V. Beachley and X. Wen, Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions, Prog. Polym. Sci. 35 (2010) 868–892; https://doi.org/10.1016/j.progpolymsci.2010.03.00310.1016/j.progpolymsci.2010.03.003288971120582161Search in Google Scholar

6. B. Janković, J. Pelipenko, M. Škarabot, I. Muševič and J. Kristl, The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers, Int. J. Pharm. 455 (2013) 338–347; https://doi.org/10.1016/j.ijpharm.2013.06.08310.1016/j.ijpharm.2013.06.08323906751Search in Google Scholar

7. S. Sinha-Ray, S. Sinha-Ray, A. L. Yarin and B. Pourdeyhimi, Application of solution-blown 20–50-nm nanofibers in filtration of nanoparticles: the efficient van der Waals collectors, J. Membr. Sci. 485 (2015) 132–150; https://doi.org/10.1016/j.memsci.2015.02.02610.1016/j.memsci.2015.02.026Search in Google Scholar

8. M. Ghaderi, M. Mousavi, H. Yousefi and M. Labbafi, All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application, Carbohydr. Polym. 104 (2014) 59–65; https://doi.org/10.1016/j.carbpol.2014.01.01310.1016/j.carbpol.2014.01.01324607160Search in Google Scholar

9. S. Chen, H. Hou, F. Harnisch, S. A. Patil, A. A. Carmona-Martinez, S. Agarwal, Y. Zhang, S. Sinha-Ray, A. L. Yarin, A. Greiner and U. Schöder, Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells, Energ. Environ. Sci. 4 (2011) 1417–1421; https://doi.org/10.1039/c0ee00446d10.1039/c0ee00446dSearch in Google Scholar

10. H. Yoon and G. Kim, A three-dimensional polycaprolactone scaffold combined with a drug delivery system consisting of electrospun nanofibers, J. Pharm. Sci. 100 (2011) 424–430; https://doi.org/10.1002/jps.2231010.1002/jps.2231020740676Search in Google Scholar

11. G. Cheng, X. Ma, J. Li, Y. Cheng, Y. Cao, Z. Wang, X. Shi, Y. Du, H. Deng and Z. Li, Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering, Int. J. Pharm. 547 (2018) 656–666; https://doi.org/10.1016/j.ijpharm.2018.06.02010.1016/j.ijpharm.2018.06.02029886100Search in Google Scholar

12. S. Chou, D. Carson and K. A. Woodrow, Current strategies for sustaining drug release from electrospun nanofibers, J. Control. Rel. 220, Part B (2015) 584–591; https://doi.org/10.1016/j.jconrel.2015.09.00810.1016/j.jconrel.2015.09.008523536326363300Search in Google Scholar

13. D. H. Reneker and A. L. Yarin, Electrospinning jets and polymer nanofibers, Polymer49 (2008) 2387–2425; https://doi.org/10.1016/j.polymer.2008.02.00210.1016/j.polymer.2008.02.002Search in Google Scholar

14. Š. Zupančič, S. Sinha-Ray, S. Sinha-Ray, J. Kristl and A. L. Yarin, Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers, Mol. Pharm. 13 (2016) 295–305; https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.5b00804Search in Google Scholar

15. A. V. Bazilevsky, A. L. Yarin and C. M. Megaridis, Co-electrospinning of core−shell fibers using a single-nozzle technique, Langmuir23 (2007) 2311–2314; https://pubs.acs.org/doi/abs/10.1021/la063194q10.1021/la063194q17266345Search in Google Scholar

16. J. Pelipenko, J. Kristl, B. Janković, S. Baumgartner and P. Kocbek, The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers, Int. J. Pharm. 456 (2013) 125–134; https://doi.org/10.1016/j.ijpharm.2013.07.07810.1016/j.ijpharm.2013.07.07823939535Search in Google Scholar

17. R. Rošic, J. Pelipenko, J. Kristl, P. Kocbek, M. Bešter-Rogač and S. Baumgartner, Physical characteristics of poly(vinyl alcohol) solutions in relation to electrospun nanofiber formation, Eur. Polym. J. 49 (2013) 290–298; http://dx.doi.org/10.1016/j.eurpolymj.2012.11.01310.1016/j.eurpolymj.2012.11.013Search in Google Scholar

18. Š. Zupančič, S. Sinha-Ray, S. Sinha-Ray, J. Kristl and A. L. Yarin, Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core, Mol. Pharm. 13 (2016) 1393–1404; https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.6b00039Search in Google Scholar

19. M. Misra, J. K. Pandey and A. K. Mohanty, Biocomposites, Woodhead Publishing, 2015, pp. 201–235.Search in Google Scholar

20. M. Wei, B. Kang, C. Sung and J. Mead, Core-sheath structure in electrospun nanofibers from polymer blends, Macromol. Mater. Engin. 291 (2006) 1307–1314; https://doi.org/10.1002/mame.20060028410.1002/mame.200600284Search in Google Scholar

21. X. H. Li, C. L. Shao and Y. C. Liu, A Simple method for controllable preparation of polymer nanotubes via single capillary electrospinning, Langmuir23 (2007) 10920–10923; https://pubs.acs.org/doi/abs/10.1021/la701806f10.1021/la701806f17880254Search in Google Scholar

22. H. Qi, P. Hu, J. Xu and A. Wang, Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment, Biomacromolecules7 (2006) 2327–2330; https://pubs.acs.org/doi/abs/10.1021/bm060264zSearch in Google Scholar

23. A. M. Moydeen, M. S. Ali Padusha, E. F. Aboelfetoh, S. S. Al-Deyab and M. H. El-Newehy, Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study, Int. J. Biol. Macromol. 116 (2018) 1250–1259; https://doi.org/10.1016/j.ijbiomac.2018.05.13010.1016/j.ijbiomac.2018.05.13029791874Search in Google Scholar

24. C. Liu, C. Wang, Q. Zhao, X. Li, F. Xu, X. Yao and M. Wang, Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds, Biomed. Mater. 13 (2018) 044107; https://doi.org/10.1088/1748-605X/aab69310.1088/1748-605X/aab69329537390Search in Google Scholar

25. L. Tian, M. P. Prabhakaran, X. Ding, D. Kai and S. Ramakrishna, Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering, J. Mater. Sci. 47 (2012) 3272–3281; https://doi.org/10.1007/s10853-011-6166-410.1007/s10853-011-6166-4Search in Google Scholar

26. L. Tian, M. P. Prabhakaran, X. Ding, D. Kai and S. Ramakrishna, Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells, J. Mater. Sci. Mater. Med. 24 (2013) 2577–2587; https://doi.org/10.1007/s10856-013-5003-510.1007/s10856-013-5003-523851928Search in Google Scholar

27. Y. Yang, X. Li, W. Cui, S. Zhou, R. Tan and C. Wang, Structural stability and release profiles of proteins from core-shell poly (DL-lactide) ultrafine fibers prepared by emulsion electrospinning, J. Biomed. Mater. Res. A86 (2008) 374–385; https://doi.org/10.1002/jbm.a.3159510.1002/jbm.a.3159517969023Search in Google Scholar

28. X. Xu, X. Chen, P. Ma, X. Wang and X. Jing, The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning, Eur. J. Pharm. Biopharm. 70 (2008) 165–170; https://doi.org/10.1016/j.ejpb.2008.03.01010.1016/j.ejpb.2008.03.01018472256Search in Google Scholar

29. S. Agarwal and A. Greiner, On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning, Polym. Adv. Technol. 22 (2011) 372–378; https://doi.org/10.1002/pat.188310.1002/pat.1883Search in Google Scholar

30. C. Wang, L. Wang and M. Wang, Evolution of core–shell structure: from emulsions to ultrafine emulsion electrospun fibers, Mater. Lett. 124 (2014) 192–196; https://doi.org/10.1016/j.mat-let.2014.03.086Search in Google Scholar

31. Y. Yang, X. Li, L. Cheng, S. He, J. Zou, F. Chen and Z. Zhang, Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds, Acta Biomater. 7 (2011) 2533–2543; https://doi.org/10.1016/j.act-bio.2011.02.031Search in Google Scholar

32. Y. Yang, X. Li, M. Qi, S. Zhou and J. Weng, Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning, Eur. J. Pharm. Biopharm. 69 (2008) 106–116; https://doi.org/10.1016/j.ejpb.2007.10.01610.1016/j.ejpb.2007.10.01618078743Search in Google Scholar

33. L. Li, H. Li, Y. Qian, X. Li, G. K. Singh, L. Zhong, W. Liu, Y. Lv, K. Cai and L. Yang, Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release, Int. J. Biol. Macromol. 49 (2011) 223–232; https://doi.org/10.1016/j.ijbiomac.2011.04.01810.1016/j.ijbiomac.2011.04.01821565216Search in Google Scholar

34. E. H. Sanders, R. Kloe korn, G. L. Bowlin, D. G. Simpson and G. E. Wnek, Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-covinyl acetate) fibers, Macromolecules36 (2003) 3803–3805; https://pubs.acs.org/doi/abs/10.1021/ma021771lSearch in Google Scholar

35. X. Li, Y. Su, C. He, H. Wang, H. Fong and X. Mo, Sorbitan monooleate and poly(L-lactide-co-ecaprolactone) electrospun nanofibers for endothelial cell interactions, J. Biomed. Mater. Res. A91 (2009) 878–885; https://doi.org/10.1002/jbm.a.3228610.1002/jbm.a.3228619065570Search in Google Scholar

36. I. C. Liao, S. Y. Chew and K. W. Leong, Aligned core-shell nanofibers delivering bioactive proteins, Nanomedicine (Lond)1 (2006) 465–471; https://doi.org/10.2217/17435889.1.4.46510.2217/17435889.1.4.46517716148Search in Google Scholar

37. Z. M. Huang, C. L. He, A. Yang, Y. Zhang, X. J. Han, J. Yin and Q. Wu, Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning, J. Biomed. Mater. Res. A77 (2006) 169–179; https://doi.org/10.1002/jbm.a.3056410.1002/jbm.a.3056416392131Search in Google Scholar

38. A. L. Yarin, Coaxial electrospinning and emulsion electrospinning of core–shell fibers, Polym. Adv. Technol. 22 (2011) 310–317; https://doi.org/10.1002/pat.178110.1002/pat.1781Search in Google Scholar

39. A. Arinstein, R. Avrahami and E. Zussman, Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations, J. Phys. D: Appl. Phys. 42 (2009) 015507; https://doi.org/10.1088/0022-3727/42/1/01550710.1088/0022-3727/42/1/015507Search in Google Scholar

40. S. N. Reznik, A. L. Yarin, E. Zussman and L. Bercovici, Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field, Phys. Fluids18 (2006) 062101; https://doi.org/10.1063/1.220674710.1063/1.2206747Search in Google Scholar

41. Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim and S. Ramakrishna, Preparation of core−shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning, Chem. Mater. 16 (2004) 3406–3409; https://pubs.acs.org/doi/abs/10.1021/cm049580f10.1021/cm049580fSearch in Google Scholar

42. S. Chakraborty, I. C. Liao, A. Adler and K. W. Leong, Electrohydrodynamics: a facile technique to fabricate drug delivery systems, Adv. Drug Deliv. Rev. 61 (2009) 1043–1054; https://doi.org/10.1016/j.addr.2009.07.01310.1016/j.addr.2009.07.013276115419651167Search in Google Scholar

43. Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner and J. H. Wendorff, One-step production of polymeric microtubes by co-electrospinning, Small3 (2007) 1064–1073; https://doi.org/10.1002/smll.20060053610.1002/smll.20060053617315262Search in Google Scholar

44. Y. N. Jiang, H. Y. Mo and D. G. Yu, Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release, Int. J. Pharm. 438 (2012) 232–239; https://doi.org/10.1016/j.ijpharm.2012.08.05310.1016/j.ijpharm.2012.08.05322981688Search in Google Scholar

45. S. A. Theron, E. Zussman and A. L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer45 (2004) 2017–2030; http://dx.doi.org/10.1016/j.polymer.2004.01.02410.1016/j.polymer.2004.01.024Search in Google Scholar

46. J. Pelipenko, J. Kristl, R. Rošic, S. Baumgartner and P. Kocbek, Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning, Acta Pharm. 62 (2012) 123–140; https://doi.org/10.2478/v10007-012-0018-x10.2478/v10007-012-0018-x22750813Search in Google Scholar

47. S. Tort, F. Acarturk and A. Besikci, Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing, Int. J. Pharm. 529 (2017) 642–653; https://doi.org/10.1016/j.ijpharm.2017.07.02710.1016/j.ijpharm.2017.07.02728705624Search in Google Scholar

48. R. Rošic, J. Pelipenko, P. Kocbek, S. Baumgartner, M. Bešter-Rogač and J. Kristl, The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning, Eur. Polym. J. 48 (2012) 1374–1384; https://doi.org/10.1016/j.eurpolymj.2012.05.00110.1016/j.eurpolymj.2012.05.001Search in Google Scholar

49. A. L. Yarin, B. Pourdeyhimi and S. Ramakrishna, Fundamentals and Applications of Micro and Nanofibers, Cambridge University Press, Cambridge 2014, pp. 25–35.10.1017/CBO9781107446830Search in Google Scholar

50. H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song and L. Jiang, Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning, Langmuir26 (2010) 11291–11296; https://pubs.acs.org/doi/abs/10.1021/la100611f10.1021/la100611f20337483Search in Google Scholar

51. Š. Zupančič, S. Baumgartner, Z. Lavrič, M. Petelin and J. Kristl, Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease, J. Drug Deliv. Sci. Technol. 30 (2015) 408–416; doi: http://dx.doi.org/10.1016/j.jddst.2015.07.00910.1016/j.jddst.2015.07.009Search in Google Scholar

52. J. Pelipenko, P. Kocbek and J. Kristl, Nanofiber diameter as a critical parameter affecting skin cell response, Eur. J. Pharm. Sci. 66 (2015) 29–35; https://doi.org/10.1016/j.ejps.2014.09.02210.1016/j.ejps.2014.09.02225301202Search in Google Scholar

53. R. Li, Y. Ma, Y. Zhang, M. Zhang and D. Sun, Potential of rhBMP-2 and dexamethasone-loaded Zein/PLLA scaffolds for enhanced in vitro osteogenesis of mesenchymal stem cells, Coll. Surf. B Biointerf. 169 (2018) 384–394; https://doi.org/10.1016/j.colsur.2018.05.039Search in Google Scholar

54. G. Kabay, C. Demirci, G. Kaleli Can, A. E. Meydan, B. G. Dasan and M. Mutlu, A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior, Int. J. Biol. Macromol. 114 (2018) 989–997; https://doi.org/10.1016/j.ijbiomac.2018.03.18210.1016/j.ijbiomac.2018.03.18229621503Search in Google Scholar

55. P. Bullon, H. N. Newman and M. Battino, Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol. 200064 (2014) 139–153; https://doi.org/10.1111/j.1600-0757.2012.00455.x10.1111/j.1600-0757.2012.00455.x24320961Search in Google Scholar

56. K. T. Shalumon, C. Sheu, C. H. Chen, S. H. Chen, G. Jose, C. Y. Kuo and J. P. Chen, Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation, Acta Biomater. 72 (2018) 121–136; https://doi.org/10.1016/j.actbio.2018.03.04410.1016/j.actbio.2018.03.04429626695Search in Google Scholar

57. V. Klang, C. Valenta and N. B. Matsko, Electron microscopy of pharmaceutical systems, Micron. 44 (2013) 45–74; https://doi.org/10.1016/j.micron.2012.07.00810.1016/j.micron.2012.07.00822921788Search in Google Scholar

58. G. Jin, M. P. Prabhakaran, D. Kai and S. Ramakrishna, Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration, Eur. J. Pharm. Biopharm. 85 (2013) 689–698; https://doi.org/10.1016/j.ejpb.2013.06.00210.1016/j.ejpb.2013.06.00223791682Search in Google Scholar

59. T. T. Nguyen, C. Ghosh, S. G. Hwang, N. Chanunpanich and J. S. Park, Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system, Int. J. Pharm. 439 (2012) 296–306 https://doi.org/10.1016/j.ijpharm.2012.09.01910.1016/j.ijpharm.2012.09.019Search in Google Scholar

60. J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer42 (2001) 261–272; http://dx.doi.org/10.1016/S0032-3861(00)00250-010.1016/S0032-3861(00)00250-0Search in Google Scholar

61. X. Wang, Y. Yuan, X. Huang and T. Yue, Controlled release of protein from core–shell nanofibers prepared by emulsion electrospinning based on green chemical, J. Appl. Polym. Sci. 132 (2015) 41811: https://doi.org/10.1002/app.4181110.1002/app.41811Search in Google Scholar

62. Q. P. Pham, U. Sharma and A. G. Mikos, Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration, Biomacromolecules7 (2006) 2796–2805; https://pubs.acs.org/doi/abs/10.1021/bm060680jSearch in Google Scholar

63. L. Ghasemi-Mobarakeh, D. Semnani and M. Morshed, A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications, J. Appl. Polym. Sci. 106 (2007) 2536–2542; https://doi.org/10.1002/app.2694910.1002/app.26949Search in Google Scholar

64. A. Martins, S. Chung, A. J. Pedro, R. A. Sousa, A. P. Marques, R. L. Reis and N. M. Neves, Hierarchical starch-based fibrous scaffold for bone tissue engineering applications, J. Tiss. Engineer. Regen. Med. 3 (2009) 37–42; https://doi.org/10.1002/term.13210.1002/term.13219021239Search in Google Scholar

65. S. B. Peters, D. A. Nelson, H. R. Kwon, M. Koslow, K. A. DeSantis and M. Larsen, TGFβ signaling promotes matrix assembly during mechanosensitive embryonic salivary gland restoration, Matrix Biol. 43 (2015) 109–124; https://doi.org/10.1016/j.matbio.2015.01.02010.1016/j.matbio.2015.01.020489904925652203Search in Google Scholar

66. J. Wang, L. Tian, L. He, N. Chen, S. Ramakrishna, K. F. So and X. Mo, Lycium barbarum polysaccharide encapsulated poly lactic-co-glycolic acid nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering, Sci. Rep. 8 (2018) 8669; https://doi.org/10.1038/s41598-018-26837-z10.1038/s41598-018-26837-z598920629875468Search in Google Scholar

67. L. Sfakis, T. Kamaldinov, A. Khmaladze, Z. F. Hosseini, D. A. Nelson, M. Larsen and J. Castracane, Mesenchymal cells affect salivary epithelial cell morphology on PGS/PLGA core/shell nanofibers, Int. J. Mol. Sci. 19 (2018) 1031; https://doi.org/10.3390/ijms1904103110.3390/ijms19041031597936429596382Search in Google Scholar

68. X. Shen, D. Yu, L. Zhu, C. Branford-White, K. White and N. P. Chatterton, Electrospun diclofenac sodium loaded Eudragit(R) L 100-55 nanofibers for colon-targeted drug delivery, Int. J. Pharm. 408 (2011) 200–207; https://doi.org/10.1016/j.ijpharm.2011.01.05810.1016/j.ijpharm.2011.01.05821291969Search in Google Scholar

69. M. Zamani, M. Morshed, J. Varshosaz and M. Jannesari, Controlled release of metronidazole benzoate from poly e-caprolactone electrospun nanofibers for periodontal diseases, Eur. J. Pharm. Biopharm. 75 (2010) 179–185; https://doi.org/10.1016/j.ejpb.2010.02.00210.1016/j.ejpb.2010.02.00220144711Search in Google Scholar

70. M. C. Bottino, R. A. Arthur, R. A. Waeiss, K. Kamocki, K. S. Gregson and R. L. Gregory, Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria, Clin. Oral Investig. 18 (2014) 2151–2158; https://doi.org/10.1007/s00784–014-1201-x10.1007/s00784-014-1201-x413696924535074Search in Google Scholar

71. M. Reise, R. Wyrwa, U. Muller, M. Zylinski, A. Volpel, M. Schnabelrauch, A. Berg. K. D. Jandt, D. C. Watts and B.W. Sigusch, Release of metronidazole from electrospunpoly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment, Dent. Mater. 28 (2012) 179–188; https://doi.org/10.1016/j.dental.2011.12.00610.1016/j.dental.2011.12.00622226009Search in Google Scholar

72. U. Paaver, J. Heinämäki, I. Laidmäe, A. Lust, J. Kozlova, E. Sillaste, K. Kirsimäe, P. Veskia and K. Kogermann, Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs, Int. J. Pharm. 479 (2015) 252–260; https://doi.org/10.1016/j.ijpharm.2014.12.02410.1016/j.ijpharm.2014.12.02425549852Search in Google Scholar

73. S. T. Ho and D. W. Hutmacher, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials27 (2006) 1362–1376; https://doi.org/10.1016/j.biomaterials.2005.08.03510.1016/j.biomaterials.2005.08.03516174523Search in Google Scholar

74. S. T. Yohe, Y. L. Colson and M. W. Grinstaff, Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates, J. Am. Chem. Soc. 134 (2012) 2016–2019; https://pubs.acs.org/doi/10.1021/ja211148aSearch in Google Scholar

75. S. T. Yohe, V. L. Herrera, Y. L. Colson and M. W. Grinstaff, Three-dimensional superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells, J. Control. Rel. 162 (2012) 92–101; https://doi.org/10.1016/j.jconrel.2012.05.04710.1016/j.jconrel.2012.05.047387886122684120Search in Google Scholar

76. Š. Zupančič, L. Preem, J. Kristl, M. Putrinš, T. Tenson, P. Kocbek and K. Kogermann, Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens, Eur. J. Pharm. Sci. 122 (2018) 347–358; https://doi.org/10.1016/j.ejps.2018.07.02410.1016/j.ejps.2018.07.02430017845Search in Google Scholar

77. W. Cui, X. Li, S. Zhou and J. Weng, Degradation patterns and surface wettability of electrospun fibrous mats, Polym. Degrad. Stab. 93 (2008) 731–738; https://doi.org/10.1016/j.polymdegradstab.2007.12.00210.1016/j.polymdegradstab.2007.12.002Search in Google Scholar

78. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. Nasr-Esfahani and S. Ramakrishna, Electrospun poly(e-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials29 (2008) 4532–4539; https://doi.org/10.1016/j.biomaterials.2008.08.00710.1016/j.biomaterials.2008.08.00718757094Search in Google Scholar

79. S. H. Ku and C. B. Park, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials31 (2010) 9431–9437; http://dx.doi.org/10.1016/j.biomaterials.2010.08.07110.1016/j.biomaterials.2010.08.07120880578Search in Google Scholar

80. A. N. Lembach, H. Tan, I. V. Roisman, T. Gambaryan-Roisman, Y. Zhang, C. Tropea and A. L. Yarin, Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats, Langmuir26 (2010) 9516–9523; https://pubs.acs.org/doi/abs/10.1021/la100031d10.1021/la100031d20205398Search in Google Scholar

81. Š. Zupančič, P. Kocbek, S. Baumgartner and J. Kristl, Contribution of nanotechnology to improved treatment of periodontal disease, Curr. Pharm. Des. 21 (2015) 3257–3271; https://doi.org/10.2174/138161282166615053117182910.2174/138161282166615053117182926027560Search in Google Scholar

82. C. K. Brown, H. D. Friedel, A. R. Barker, L. F. Buhse, S. Keitel, T. L. Cecil, J. Kraemer, J. M. Morris, C. Reppas, M. P. Stickelmeyer, C. Yomota and V. P. Shah, FIP/AAPS joint workshop report: dissolution/in vitro release testing of novel/special dosage forms, AAPS PharmSciTech. 12 (2011) 782–794; https://doi.org/10.1208/s12249-011-9634-x10.1208/s12249-011-9634-x313464521688063Search in Google Scholar

83. J. Pelipenko, P. Kocbek, B. Govedarica, R. Rošič, S. Baumgartner and J. Kristl, The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes, Eur. J. Pharm. Biopharm. 84 (2013) 401–411; https://doi.org/10.1016/j.ejpb.2012.09.00910.1016/j.ejpb.2012.09.00923085581Search in Google Scholar

84. M. C. Bottino, V. Thomas, G. Schmidt, Y. K. Vohra, T. M. Chu, M. J. Kowolik and G. M. Janowski, Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective, Dent. Mater. 28 (2012) 703–721; https://doi.org/10.1016/j.dental.2012.04.02210.1016/j.dental.2012.04.02222592164Search in Google Scholar

85. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada and S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications, Int. J. Pharm. 420 (2011) 1–10; https://doi.org/10.1016/j.ijpharm.2011.08.03210.1016/j.ijpharm.2011.08.03221884771Search in Google Scholar

86. S. Kajdič, F. Vrečer and P. Kocbek, Preparation of poloxamer-based nanofibers for enhanced dissolution of carvedilol, Eur. J. Pharm. Sci. 117 (2018) 331–340; https://doi.org/10.1016/j.ejps.2018.03.00610.1016/j.ejps.2018.03.00629514051Search in Google Scholar

87. D. G. Yu, L. M. Zhu, C. J. Branford-White, J. H. Yang, X. Wang, Y. Li and W. Qian, Solid dispersions in the form of electrospun core-sheath nanofibers, Int. J. Nanomed. 6 (2011) 3271–3280; http://dx.doi.org/10.2147/IJN.S2746810.2147/IJN.S27468325267522228995Search in Google Scholar

88. J. J. Li, Y. Y. Yang, D. G. Yu, Q. Du and X. L. Yang, Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers, Eur. J. Pharm. Sci. 122 (2018) 195–204; https://doi.org/10.1016/j.ejps.2018.07.00210.1016/j.ejps.2018.07.00230008429Search in Google Scholar

89. D. G. Yu, X. X. Shen, C. Branford-White, K. White, L. M. Zhu and S. W. Bligh, Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers, Nanotechnology20 (2009) 055104; https://doi.org/10.1088/0957-4484/20/5/05510410.1088/0957-4484/20/5/05510419417335Search in Google Scholar

90. M. E. Aulton and K. Taylor, Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, 4th ed: Churchill Livingstone/Elsevier, China 2013, pp. 550–565.Search in Google Scholar

91. H. Frizzell, T. J. Ohlsen and K. A. Woodrow, Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics, Int. J. Pharm. 533 (2017) 99–110; https://doi.org/10.1016/j.ijpharm.2017.09.04310.1016/j.ijpharm.2017.09.043565455328941831Search in Google Scholar

92. U. E. Illangakoon, D. G. Yu, B. S. Ahmad, N. P. Chatterton and G. R. Williams, 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning, Int. J. Pharm. 495 (2015) 895–902; https://doi.org/10.1016/j.ijpharm.2015.09.04410.1016/j.ijpharm.2015.09.04426410755Search in Google Scholar

93. D. Jia, Y. Gao and G. R. Williams, Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release, Int. J. Pharm. 523 (2017) 376–385; https://doi.org/10.1016/j.ijpharm.2017.03.03810.1016/j.ijpharm.2017.03.03828344174Search in Google Scholar

94. M. Jin, D. G. Yu, X. Wang, C. F. Geraldes, G. R. Williams and S. W. Bligh, Electrospun contrast-agent-loaded fibers for colon-targeted MRI, Adv. Healthc. Mater. 5 (2016) 977–985; https://doi.org/10.1002/adhm.20150087210.1002/adhm.20150087226899401Search in Google Scholar

95. L. E. Aguilar, A. R. Unnithan, A. Amarjargal, A. P. Tiwari, S. T. Hong, C. H. Park and C. S. Kim, Electrospun polyurethane/Eudragit (R) L100-55 composite mats for the pH dependent release of paclitaxel on duodenal stent cover application, Int. J. Pharm. 478 (2015) 1–8; https://doi.org/10.1016/j.ijpharm.2014.10.05710.1016/j.ijpharm.2014.10.05725445536Search in Google Scholar

96. A. Akhgari, Z. Heshmati, H. Afrasiabi Garekani, F. Sadeghi, A. Sabbagh, B. Sharif Makhmalzadeh and A. Nokhodchi, Indomethacin electrospun nanofibers for colonic drug delivery: in vitro dissolution studies, Coll. Surf. B Biointerf. 152 (2017) 29–35; https://doi.org/10.1016/j.colsurfb.2016.12.03510.1016/j.colsurfb.2016.12.03528064095Search in Google Scholar

97. K. Karthikeyan, S. Guhathakarta, R. Rajaram and P. S. Korrapati, Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole, Int. J. Pharm. 438 (2012) 117–122; https://doi.org/10.1016/j.ijpharm.2012.07.07510.1016/j.ijpharm.2012.07.07522960320Search in Google Scholar

98. J. Siepmann, R. A. Siegel and M. J. Rathbone, Fundamentals and Applications of Controlled Release Drug Delivery, 1 ed: Springer US 2012, pp. 19–43.10.1007/978-1-4614-0881-9Search in Google Scholar

99. S. K. Tiwari, R. Tzezana, E. Zussman and S. S. Venkatraman, Optimizing partition-controlled drug release from electrospun core-shell fibers, Int. J. Pharm. 392 (2010) 209–217; https://doi.org/10.1016/j.ijpharm.2010.03.02110.1016/j.ijpharm.2010.03.02120227472Search in Google Scholar

100. X. Sun, L. R. Nobles, H. G. Börner and R. J. Spontak, Field-driven surface segregation of biofunctional species on electrospun PMMA/PEO microfibers, Macromol. Rapid Commun. 29 (2008) 1455–1460; https://doi.org/10.1002/marc.20080016310.1002/marc.200800163Search in Google Scholar

101. Z. Li, H. Kang, N. Che, Z. Liu, P. Li, W. Li, C. Zhang, C. Cao, R. Liu and Y. Huang, Controlled release of liposome-encapsulated naproxen from core-sheath electrospun nanofibers, Carbohydr. Polym. 111 (2014) 18–24; https://doi.org/10.1016/j.carbpol.2014.04.01710.1016/j.carbpol.2014.04.01725037324Search in Google Scholar

102. A. Szentivanyi, T. Chakradeo, H. Zernetsch and B. Glasmacher, Electrospun cellular microenvironments: understanding controlled release and scaffold structure, Adv. Drug Del. Rev. 63 (2011) 209–220; https://doi.org/10.1016/j.addr.2010.12.00210.1016/j.addr.2010.12.002Search in Google Scholar

103. E. M. Fulcher, R. M. Fulcher and C. D. Soto, Pharmacology: Principles and Applications, 3rd ed., Elsevier Health Sciences, St. Louis 2012.Search in Google Scholar

104. G. Walsh, Biopharmaceuticals and biotechnology medicines: an issue of nomenclature, Eur. J. Pharmaceut. Sci. 15 (2002) 135–138; http://dx.doi.org/10.1016/S0928-0987(01)00222-610.1016/S0928-0987(01)00222-6Search in Google Scholar

105. Y. Lokko, M. Heijde, K. Schebesta, P. Scholtèsa, M. Van Montagu and M. Giacca, Biotechnology and the bioeconomy – Towards inclusive and sustainable industrial development, New Biotechnol. 40A (2018) 5–10; https://doi.org/10.1016/j.nbt.2017.06.00510.1016/j.nbt.2017.06.00528663120Search in Google Scholar

106. M. A. H. Capelle, R. Gurny and T. Arvinte, High throughput screening of protein formulation stability: Practical considerations, Eur. J. Pharmaceut. Biopharmaceut. 65 (2007) 131–148; http://dx.doi.org/10.1016/j.ejpb.2006.09.00910.1016/j.ejpb.2006.09.00917107777Search in Google Scholar

107. M. Manning, D. Chou, B. Murphy, R. Payne and D. Katayama, Stability of protein pharmaceuticals: an update, Pharmaceutic Res. 27 (2010) 544–575; https://doi.org/10.1007/s11095-009-0045-610.1007/s11095-009-0045-620143256Search in Google Scholar

108. S. J. Shire, Formulation and manufacturability of biologics, Curr. Opin. Biotechnol. 20 (2009) 708–714; https://doi.org/10.1016/j.copbio.2009.10.00610.1016/j.copbio.2009.10.00619880308Search in Google Scholar

109. E. J. McNally and J. E. Hastedt, Protein Formulation and Delivery, 2nd ed., Taylor & Francis, Boca Raton 2007, pp. 1–6.10.3109/9780849379529Search in Google Scholar

110. H. Jiang, L. Wang and K. Zhu, Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents, J. Control. Rel. 193 (2014) 296–303; https://doi.org/10.1016/j.jconrel.2014.04.02510.1016/j.jconrel.2014.04.02524780265Search in Google Scholar

111. H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu and W. Chen, A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, J. Control. Rel. 108 (2005) 237–243; https://doi.org/10.1016/j.jconrel.2005.08.00610.1016/j.jconrel.2005.08.00616153737Search in Google Scholar

112. W. Ji, F. Yang, J. J. van den Beucken, Z. Bian, M. Fan, Z. Chen and J. A. Jansen, Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning, Acta Biomater. 6 (2010) 4199–4207; https://doi.org/10.1016/j.actbio.2010.05.02510.1016/j.actbio.2010.05.02520594971Search in Google Scholar

113. V. Bertoncelj, J. Pelipenko, J. Kristl, M. Jeras, M. Cukjati and P. Kocbek, Development and bio-evaluation of nanofibers with blood-derived growth factors for dermal wound healing, Eur. J. Pharm. Biopharm. 88 (2014) 64–74; https://doi.org/10.1016/j.ejpb.2014.06.00110.1016/j.ejpb.2014.06.00124931341Search in Google Scholar

114. A. Saraf, L. S. Baggett, R. M. Raphael, F. K. Kasper and A. G. Mikos, Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds, J. Control. Rel. 143 (2010) 95–103; https://doi.org/10.1016/j.jconrel.2009.12.00910.1016/j.jconrel.2009.12.009284018020006660Search in Google Scholar

115. L. V. Hooper and J. I. Gordon, Commensal host-bacterial relationships in the gut, Science292 (2001) 1115–1118; https://doi.org/10.1016/j.jconrel.2009.12.00910.1016/j.jconrel.2009.12.009Search in Google Scholar

116. Z. K. Nagy, I. Wagner, Á. Suhajda, T. Tobak, A. H. Harasztos, T. Vigh, P. L. Sóti, H. Pataki, K. Molnár and G. Marosi, Nanofibrous solid dosage form of living bacteria prepared by electrospinning, Express Polym. Lett. 8 (2014) 352–361; https://doi.org/10.3144/expresspolymlett.2014.3910.3144/expresspolymlett.2014.39Search in Google Scholar

117. Š. Zupančič, T. Rijavec, A. Lapanje, M. Petelin, J. Kristl and P. Kocbek, Nanofibers with incorporated autochthonous bacteria as potential probiotics for local treatment of periodontal disease, Biomacromolecules19 (2018) 4299–4306; https://pubs.acs.org/doi/10.1021/acs.biomac.8b01181Search in Google Scholar

118. A. Lopez-Rubio, E. Sanchez, Y. Sanz and J. M. Lagaron, Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers, Biomacromolecules10 (2009) 2823–2829; https://pubs.acs.org/doi/abs/10.1021/bm900660b10.1021/bm900660b19817490Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo