1. bookVolumen 69 (2019): Edición 2 (June 2019)
Detalles de la revista
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Acceso abierto

Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents

Publicado en línea: 28 Mar 2019
Volumen & Edición: Volumen 69 (2019) - Edición 2 (June 2019)
Páginas: 177 - 196
Aceptado: 26 Oct 2018
Detalles de la revista
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año

1. World Health Organization, Cancer Control: Knowledge into Action. WHO Guide, Geneva 2005; http://www.who.int/cancer; last access date November 27, 2017.Search in Google Scholar

2. M. R. Alison, The Cancer Handbook, Nature Publishing Group, London 2002.Search in Google Scholar

3. M. Shaharyar, M. M. Abdullah, M. A. Bakht and J. Majeed, Pyrazoline bearing benzimidazoles: Search for anticancer agent, Eur. J. Med. Chem. 45 (2010) 114–119; https://doi.org/10.1016/j.ejmech.2009.09.03210.1016/j.ejmech.2009.09.03219883957Search in Google Scholar

4. K. M. Amin, M. M. Ismail, E. Noaman, D. H. Soliman and Y. A. Ammar, New quinoxaline 1,4-di-N-oxides. Part 1: Hypoxia-selective cytotoxins and anticancer agents derived from quinoxaline 1, 4-di-N-oxides, Bioorg. Med. Chem. 14 (2006) 6917–6923; https://doi.org/10.1016/j.bmc.2006.06.03810.1016/j.bmc.2006.06.03816843668Search in Google Scholar

5. A. Courbet, N. Bec, C. Constant, C. Larroque, M. Pugniere, S. E. Messaoudi, Z. Zghaib, S. Khier, C. Deleuze-Masquefa and F. Gattacceca, Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechansims in correlation with cytotoxicity, PLoS ONE12 (2017) e0182022; https://doi.org/10.1371/journal.pone.018202210.1371/journal.pone.0182022555235828797090Search in Google Scholar

6. Q. Wei, H. Liu, H. Zhou, D. Zhang, Z. Zhang and Q. Zhou, Anticancer activity of a thymidine quinoxaline conjugate is modulated by cytosolic thymidine pathways, BMC Cancer15 (2015) 159 (11 pages); https://doi.org/10.1186/s12885-015-1149-510.1186/s12885-015-1149-5437457425881156Search in Google Scholar

7. Q. Guan, C. Han, D. Zuo, M. Zhai, Z. Li, Q. Zhang, Y. Zhai, X. Jiang, K. Bao, Y. Wu and W. Zhang, Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities, Eur. J. Med. Chem. 87 (2014) 306–315; https://doi.org/10.1016/j.ejmech.2009.09.03210.1016/j.ejmech.2009.09.032Search in Google Scholar

8. H. K. Rim, S. Cho, D. H. Shin, K. S. Chung, Y. W. Cho, J. H. Choi, J. Y. Lee and K. Lee, T-Type Ca2+ channel blocker, KYS05090 induces autophagy and apoptosis in A549 cells through inhibiting glucose uptake, Molecules19 (2014) 9864–9875; https://doi.org/10.3390/molecules1907986410.3390/molecules19079864627069125006791Search in Google Scholar

9. C. H. Tseng, Y. L. Chen, P. J. Lu, C. N. Yang and C. C. Tzeng, Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives, Bioorg. Med. Chem. 16 (2008) 3153–3162; https://doi.org/10.1016/j.bmc.2007.12.02810.1016/j.bmc.2007.12.02818180162Search in Google Scholar

10. O. O. Ajani and O. C. Nwinyi, Synthesis and evaluation of antimicrobial activity of phenyl and furan-2-yl[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one and their hydrazone precursors, Can. J. Pure Appl. Sci. 3 (2009) 983–992.Search in Google Scholar

11. V. M. Lakshmi, F. F. Hsu, H. A. J. Schut and T. V. Zenser, Stability and reactivity of 2-nitroso amino-3,8-dimethylimidazo[4,5-f]quinoxaline, Chem. Res. Toxicol. 19 (2006) 325–333; https://doi.org/10.1021/tx050305x10.1021/tx050305x253861216485910Search in Google Scholar

12. R. B. K. Siram, J. Smith, T. D. Anthopoulos and S. Patil, Acenaphtho[1,2-b]quinoxaline based low band gap copolymers for organic thin film transistor applications, J. Mat. Chem. 22 (2012) 4450–4458; https://doi.org/10.1039/C1JM13540F10.1039/C1JM13540FSearch in Google Scholar

13. O. O. Ajani, C. A. Obafemi, O. C. Nwinyi and D. A. Akinpelu, Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives, Bioorg. Med. Chem. 18 (2010) 214–221; https://doi.org/10.1016/j.bmc.2009.10.06410.1016/j.bmc.2009.10.06419948407Search in Google Scholar

14. S. Srivastava, J. Banerjee and N. Srestha, Quinoxaline as a potent heterocyclic moiety, IOSR J. Pharm. 4 (2014) 17–27; https://doi.org/10.9790/3013-04012010161702710.9790/3013-040120101617027Search in Google Scholar

15. M. Veiraj and D. Sowmya, A review on cancer screening, Int. J. PharmTech. Res. 9 (2016) 224–233.Search in Google Scholar

16. M. Ghouari, The relationship between food and cancer, Int. J. Innov. Appl. Stud. 8 (2014) 1814–1830.Search in Google Scholar

17. S. Kumar, X. Peng, J. Daley, L. Yang, J. Shen, N. Nguyen, G. Bae, H. Niu, Y. Peng, H-J. Hsieh, L. Wang, C. Rao, C. C. Stephan, P. Sung, G. Ira and G. Peng, Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells, Oncogenesis6 (2017) e319; https://doi.org/10.1038/oncsis.2017.1510.1038/oncsis.2017.15552049228414320Search in Google Scholar

18. R. Derynck, B. P. Muthusamy and K. Y. Saeteurn, Signaling pathway cooperation in TGF-beta-induced epithelial-mesenchymal transition, Curr. Opin. Cell Biol. 31 (2014) 56–66; https://doi.org/10.1016/j.ceb.2014.09.00110.1016/j.ceb.2014.09.001465773425240174Search in Google Scholar

19. J. Yin, W. Ren, X. Huang, T. Li and Y. Yin, Protein restriction and cancer, Biochim. Biophys. Acta1869 (2018) 256–262; https://doi.org/10.1016/j.bbcan.2018.03.00410.1016/j.bbcan.2018.03.00429596961Search in Google Scholar

20. L. Fontana, R. M. Adelaiye, A. L. Rastelli, K. M. Miles, E. Ciamporcero, V. D. Longo, H. Nguyen, R. Vessella and R. Pili, Dietary protein restriction inhibits tumor growth in human xenograft models of prostate and breast cancer, Oncotarget4 (2013) 2451–2461; https://doi.org/10.18632/oncotarget.158610.18632/oncotarget.1586392684024353195Search in Google Scholar

21. S. D. Boone, K. B. Baumgartner, R. N. Baumgartner, A. E. Connor, E. M. John, A. R. Giuliano, L. M. Hines, S. N. Rai, E. C. Riley, C. M. Pinkston, R. K. Wolff and M. L. Slattery, Active and passive cigarette smoking and mortality among Hispanic and non-Hispanic white women diagnosed with invasive breast cancer, Ann. Epidemiol. 25 (2015) 824–831; https://doi.org/10.1016/j.annepidem.2015.08.00710.1016/j.annepidem.2015.08.007460961826387598Search in Google Scholar

22. H. Parada, P. T. Bradshaw, S. E. Steck, L. S. Engel, K. Conway, S. L. Teitelbaum, A. I. Neugut, R. M. Santella and M. D. Gammon, Postdiagnosis changes in cigarette smoking and survival following breast cancer, JNCI Cancer Spect. 1 (2017) Article ID pkx001 (8 pages); https://doi.org/10.1093/jncics/pkx00110.1093/jncics/pkx001587592629608187Search in Google Scholar

23. J. Connor, Alcohol consumption as a cause of cancer, Addiction112 (2017) 222–228; https://doi.org/10.1111/add.1347710.1111/add.1347727442501Search in Google Scholar

24. C. Pelucchi, I. Tramacere, P. Boffetta, E. Negri and C. La Vecchia, Alcohol consumption and cancer risk, Nutr. Cancer63 (2011) 983–990; https://doi.org/10.1080/01635581.2011.59664210.1080/01635581.2011.59664221864055Search in Google Scholar

25. V. Bagnardi, M. Rota, E. Botteri, I. Tramacere, F. Islami, V. Fedirko, L. Scotti, M. Jenab, F. Turati, E. Pasquali, C. Pelucchi, C. Galeone, R. Bellocco, E. Negri, G. Corrao, P. Boffetta and C. La Vecchia, Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis, Br. J. Cancer112 (2015) 580–593; https://doi.org/10.1038/bjc.2014.57910.1038/bjc.2014.579445363925422909Search in Google Scholar

26. P. Bofetta and L. Garfinkel, Alcohol drinking and mortality among men enrolled in an American Cancer Society prospective study, Epidemiology1 (1990) 342–348.10.1097/00001648-199009000-000032078609Search in Google Scholar

27. M. Kotepui, Diet and risk of breast cancer, Contemp. Oncol. 20 (2016) 13–19; https://doi.org/10.5114/wo.2014.4056010.5114/wo.2014.40560482973927095934Search in Google Scholar

28. R. E. Rossi, M. Pericleous, D. Mandair, T. Whyand and M. E. Caplain, The role of dietary factors in prevention and progression of breast cancer, Anticancer Res. 34 (2014) 6861–6875.Search in Google Scholar

29. X. Wang, Y. Ouyang, J. Liu, M. Zhu, G. Zhao, W. Bao and F. B. Hu, Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies, Br. Med. J. 349 (2014) Article ID g4490 (14 pages); https://doi.org/10.1136/bmj.g449010.1136/bmj.g4490411515225073782Search in Google Scholar

30. K. Y. Wolin, K. Carson and G. A. Colditz, Obesity and cancer, Oncologist15 (2010) 556–565; https://doi.org/10.1634/theoncologist.2009-028510.1634/theoncologist.2009-0285322798920507889Search in Google Scholar

31. A. P. Coll, Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clin. Sci. (London) 113 (2007) 171–182; https://doi.org/10.1042/CS2007010510.1042/CS2007010517623013Search in Google Scholar

32. C. M. Dieli-Conwright, K. Lee and J. L. Kiwata, Reducing the risk of breast cancer recurrence: An evaluation of the effects and mechanisms of diet and exercise, Curr. Breast Cancer Rep. 8 (2016) 139–150; https://doi.org/10.1007/s12609-016-0218-310.1007/s12609-016-0218-3511228927909546Search in Google Scholar

33. B. Yan, L. M. Yang, L. P. Hao, C. Yang, L. Quan, L. H. Wang, Z. Wu, X. P. Li, Y. T. Gao, Q. Sun and J. M. Yuan, Determinants of quality of life for breast cancer patients in Shanghai, China, PLoS ONE11 (2016) Article ID e0153714 (14 pages); https://doi.org/10.1371/journal.pone.015371410.1371/journal.pone.0153714483333927082440Search in Google Scholar

34. M. Keimling, G. Behrens, D. Schmid, C. Jochem and M. F. Leittzmann, The association between physical activity and bladder cancer: a systematic review and meta-analysis, Br. J. Cancer110 (2014) 1862–1870; https://doi.org/10.1038/bjc.2014.7710.1038/bjc.2014.77397409024594995Search in Google Scholar

35. J. Gerritsen and A. Vincent, Exercise improves quality of life in patients with cancer: a systemic review and meta-analysis of randomized controlled trials, Br. J. Sport Med. 50 (2016) 796–803; https://doi.org/10.1136/bjsports-2015-09478710.1136/bjsports-2015-09478726719503Search in Google Scholar

36. M. D. Holmes, W. Y. Chen, D. Feskanich, C. H. Kroenke and G. A. Colditz, Physical activity and survival after breast cancer diagnosis, J. Am. Med. Assoc. 293 (2005) 2479–2486; https://doi.org/10.1001/jama.293.20.247910.1001/jama.293.20.247915914748Search in Google Scholar

37. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, 4th ed., Garland Science, New York 2002.Search in Google Scholar

38. N. Mavaddat, A. C. Antoniou, D. F. Easton and M. Garcia-Closas, Genetic susceptibility of breast cancer, Mol. Oncol. 4 (2010) 174–191; https://doi.org/10.1016/j.molonc.2010.04.01110.1016/j.molonc.2010.04.011Search in Google Scholar

39. P. D. Pharaoh, J. M. Lipscombe, K. L. Redman, N. E. Day, D. F. Easton and B.A. Ponder, Familial predisposition to breast cancer in a British population: implications for prevention, Eur. J. Cancer36 (2000) 773–779; https://doi.org/10.1016/S0959-8049(00)00023-X10.1016/S0959-8049(00)00023-XSearch in Google Scholar

40. U. Krug, A. Ganser and H. P. Koeffler, Tumor suppression genes in normal and malignant hematopoiesis, Oncogene21 (2002) 3475–3495; https://doi.org/10.1038/sj/onc/1205322Search in Google Scholar

41. N. Mavaddat, A. M. Dunning, B. A. Ponder, D. F. Easton and P. D. Pharaoh, Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer, Cancer Epidemiol. Biomarkers Prev. 18 (2009) 255–259; https://doi.org/10.1158/1055-9965.EPI-08-070410.1158/1055-9965.EPI-08-0704Search in Google Scholar

42. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward and D. Forman, Global cancer statistics, CA Cancer J. Clin. 61 (2011) 69–90; https://doi.org/10.3322/caac.2010710.3322/caac.20107Search in Google Scholar

43. M. Furrukh, Tobacco smoking and lung cancer, Sultan Qaboos Univ. Med. J. 13 (2013) 345–358.10.12816/0003255Search in Google Scholar

44. X. Q. Jiang, X. D. Mei and D. Di Feng, Air pollution and chronic airway diseases: what should people know and do? J. Thorac. Dis. 8 (2016) E31-E40; https://doi.org/10.3978/j.issn.2072-1439.2015.11.50Search in Google Scholar

45. United States Environmental Protection Agency, Health Assessment Document for Diesel Engine Exhaust, USEPA Washington DC, 2002; http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=29060; last access date November 30, 2017.Search in Google Scholar

46. P. Farbicka and A. Nowicki, Palliative care in patients with lung cancer, Contemp. Oncol. 17 (2013) 238–245; https://doi.org/10.5114/wo.2013.3503310.5114/wo.2013.35033Search in Google Scholar

47. S. Ahn, S. H. Hwang, J. Han, Y. L. Choi, S. H. Lee, J. S. Ahn, K. Park, M. J. Ahn and W. Y. Park, Transformation to small cell lung cancer of pulmonary adenocarcinoma: clinicopathologic analysis of six cases, J. Pathol. Transl. Med. 50 (2016) 258–263; https://doi.org/10.4132/jptm.2016.04.1910.4132/jptm.2016.04.19Search in Google Scholar

48. M. G. Oser, M. J. Niederst, L. V. Sequist and J. A. Engelman, Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin, Lancet Oncol. 16 (2015) Article ID e165–172; https://doi.org/10.1016/S1470-2045(14)71180-510.1016/S1470-2045(14)71180-5Search in Google Scholar

49. B. Gholipour, Leukemia: Types, symptoms and treatment, Live Sciences Publication, Paris; http://www.livescience.com/34763-leukemia-blood-cancer-bone-marrow-transplant.html; last access November 15, 2017.Search in Google Scholar

50. M. Trendowski, The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy, Crit. Rev. Oncol. Hematol. 94 (2015) 149–163; https://doi.org/10.1016/j.critrevonc.2014.12.01310.1016/j.critrevonc.2014.12.01325604499Search in Google Scholar

51. G. N. Waite, Blood and immunology. Chapter 9. Blood components in: Medical Physiology: Principles for Clinical Medicine, 3rd ed. (R. A. Rhoades and D. R. Bell, Eds.), Lippincott Williams and Wilkins, Baltimore 2009, pp. 169–171.Search in Google Scholar

52. I. Z. Al-Mohsen, D. A. Sutton, L. Sigler, E. Almodovar, N. Mahgoub, H. Frayha, S. Al-Hajjar, M. G. Rinaldi and T. J. Walsh, Acrophialophora fusisipora brain abscess in a child with acute lymphoblastic leukemia: Review of cases and taxonomy, J. Clin. Microbiol. 38 (2000) 4569–4573.Search in Google Scholar

53. R. Wakeford, M. P. Little and G. M. Kendall, Risk of childhood leukemia after low-level exposure to ionizing radiation, Expert. Rev. Hematol. 3 (2010) 251–254; https://doi.org/10.1586/ehm.10.2510.1586/ehm.10.25307670621082976Search in Google Scholar

54. M. M. Jacobs, T. F. Malloy, J. A. Tickner and S. Edwards, Alternatives assessment frameworks: Research needs for the informed substitution of hazardous chemicals, Environ. Health Perspect. 124 (2016) 265–280; https://doi.org/10.1289/ehp.140958110.1289/ehp.1409581478634426339778Search in Google Scholar

55. J. B. Liao, Viruses and human cancer, Yale J. Biol. Med. 79 (2006) 115–122.Search in Google Scholar

56. D. A. Pollyea, J. A. Gutman, L. Gore, C. A. Smith and C. T. Jordan, Targeting acute myeloid leukemia stem cells: A review and principles for the development of clinical trials, Haematologica99 (2014) 1277–1284; https://doi.org/10.3324/haematol.2013.08520910.3324/haematol.2013.085209411682525082785Search in Google Scholar

57. M. Riihimäki, A. Hemminki, J. Sundquist and K. Hemminki, Patterns of metastasis in colon and rectal cancer, Sci. Rep. 6 (2016) Article ID 29765; https://doi.org/10.1038/srep2976510.1038/srep29765494594227416752Search in Google Scholar

58. M. Fleming, S. Ravula, S. F. Tatishchev and H. L. Wang, Colorectal carcinoma: Pathologic aspects, J. Gastrointest. Oncol. 3 (2012) 153–173; https://doi.org/10.3978/j.issn.2078-6891.2012.030Search in Google Scholar

59. D. M. Parkin, S. L. Whelan, J. Ferlay, L. Teppo and D. B. Thomas (Eds.), Cancer Incidence in Five Continents, IARC Scientific Publications No. 155, International Agency for Research on Cancer, Lyon 2002, Vol. VIII.Search in Google Scholar

60. M. K. Mishra and K. S. Bishnupuri, Epigenetics of colorectal cancer, in: Epigenetic Advancements in Cancer, Springer International Publishing, New York 2016, pp. 98–99.Search in Google Scholar

61. F. A. Haggar and R. P. Boushey, Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factor, Clin. Colon Rectal Surg. 22 (2009) 191–197; https://doi.org/10.1055/s-0029-124245810.1055/s-0029-1242458279609621037809Search in Google Scholar

62. G. S. Cooper, F. Xu, J. S. B. Sloan, M. D. Schluchter and S. M. Koroukian, Prevalence and predictors of interval colorectal cancers in medicine beneficiaries, Cancer118 (2012) 3044–3052; http://doi.org/10.1002/cncr.2660210.1002/cncr.26602325847221989586Search in Google Scholar

63. P. J. T. López, J. S. Albero and J. A. Rodríguez-Montes, Primary and secondary prevention of colorectal cancer, Clin. Med. Insights Gastroenterol. 7 (2014) 33–46; https://doi.org/10.4137/CGast.S1403910.4137/CGast.S14039411637925093007Search in Google Scholar

64. R. M. Jones, K. J. Devers, A. J. Kuzel and S. H. Woolf, Patient-reported barriers to colorectal cancer screening, Am. J. Prev. Med. 38 (2010) 508–516; https://doi.org/10.1016/j.amepre.2010.01.02110.1016/j.amepre.2010.01.021294682520409499Search in Google Scholar

65. C. de Martel, D. Maucort-Boulch, M. Plummer and S. Franceschi, World-wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma, Hepatology62 (2015) 1190–1200; https://doi.org/10.1002/hep.2796910.1002/hep.27969501926126146815Search in Google Scholar

66. H. B. El-Serag, Epidemiology of viral hepatitis and hepatocellular carcinoma, Gastroenterology142 (2012) 1264–1273; https://doi.org/10.1053/j.gastro.2011.12.06110.1053/j.gastro.2011.12.061333894922537432Search in Google Scholar

67. B. Kucukcakan and Z. Hayrulai-Musliu, Challenging role of dietary aflatoxin B1 exposure and hepatitis B infection on risk of hepatocellular carcinoma, Open Access Maced. J. Med. Sci. 3 (2015) 363–369; https://doi.org/10.3889/oamjms.2015.03210.3889/oamjms.2015.032487788327275251Search in Google Scholar

68. S. Lierena, M. T. Arias-Loste, A. Puente, J. Cabezas, J. Crespo and E. Fábrega, Binge drinking: Burden of liver disease and beyond, World J. Hepatol. 7 (2015) 2703–2715; https://doi.org/10.4254/wjh.v7.i27.270310.4254/wjh.v7.i27.2703466339026644814Search in Google Scholar

69. A. C. Wolff, A. L. Blackford, K. Visvanathan, H. S. Rugo, B. Moy, L. J. Goldstein, K. Stockerl-Goldstein, L. Neumayer, T. S. Langbaum, R. L. Theriault, M. E. Hughes, J. C. Weeks and J. E. Karp, Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience, J. Clin. Oncol. 33 (2015) 340–348; https://doi.org/10.1200/JCO.2013.54.611910.1200/JCO.2013.54.6119430221525534386Search in Google Scholar

70. G. N. Sharma, R. Dave, J. Sanadya, P. Sharma and K. K. Sharma, Various types and management of breast cancer: An overview, J. Adv. Pharm. Technol. Res. 1 (2010) 109–126.Search in Google Scholar

71. M. D. Abeloff, A. C. Wolff, B. L. Weber, T. Z. Zaks, V. Sacchini and B. McCormick, Cancer of the breast, in Abeloff’s Clinical Oncology, 4th ed. (M. D. Abeloff, J. O. Armitage, J. E. Niederhuber, M. B. Kastan and W. G. McKenna, Eds.), Elsevier Churchill Livingstone, Philadelphia 2008, pp. 1875–1943.10.1016/B978-0-443-06694-8.50099-3Search in Google Scholar

72. J. K. McLaughlin, W. J. Blot, S. S. Devesa and J. F. Fraumeni, Renal cancer, in: Cancer Epidemiology and Prevention, 2nd ed. (D. Schottenfeld and J. F. Fraumeni, Eds.), Oxford University Press, New York 1996, pp. 1142–1155.Search in Google Scholar

73. R. Schmieder, C. Delles and F. Messerli, Diuretic therapy and the risk for renal cell carcinoma, J. Nephrol. 13 (2000) 343–346.Search in Google Scholar

74. T. A. Martin, L. Ye, A. J. Sanders, J. Lane and W. G. Jiang, Cancer invasion and metastasis: Molecular and cellular perspective, in: Metastasis Cancer: Clinical and Biological Perspectives (Ed. R. Jandial), Landes Bioscience, Austin (TX) 2013, pp. 135–168.Search in Google Scholar

75. M. Andreeff, D. W. Goodrich and A. B. Pardee, Cell proliferation, differentiation, and apoptosis, in: Holland-Frei Cancer Medicine, 6th ed. (D. W. Kufe and R. E. Pollock, Eds.), BC Decker Publisher, Hamilton 2003, pp. 21–34.Search in Google Scholar

76. N. Plato, J. I. Martinsen, P. Sparén, G. Hillerdal and E. Weiderpass, Occupation and mesothelioma in Sweden: updated incidence in men and women in the 27 years after the asbestos ban, Epidemiol. Health38 (2016) e2016039 (25 pages); https://doi.org/10.4178/epih.e201603910.4178/epih.e2016039511443827866405Search in Google Scholar

77. J. W. Lim, D. Koh, J. S. G. Khim, G. V. Le and K. Takahashi, Preventive measures to eliminate asbestos-related diseases in Singapore, Safety Health Work2 (2011) 201–209; https://doi.org/10.5491/SHAW.2011.2.3.20110.5491/SHAW.2011.2.3.201343090422953203Search in Google Scholar

78. E. S. Lee and J. M. Lee, Imaging diagnosis of pancreatic cancer: A state-of-the-art review, World J. Gastroenterol. 20 (2014) 7864–7877; https://doi.org/10.3748/wjg.v20.i24.786410.3748/wjg.v20.i24.7864406931424976723Search in Google Scholar

79. K. Toshima, T. Ozawa, T. Kimura and S. Matsumura, The significant effect of the carbohydrate structures on the DNA photocleavage of the quinoxaline–carbohydrate hybrids, Bioorg. Med. Chem. Lett. 14 (2004) 2777–2779; https://doi.org/10.1016/j.bmcl.2004.03.06510.1016/j.bmcl.2004.03.06515125931Search in Google Scholar

80. H. Gao, E. F. Yamasaki, K. K. Chan, L. L. Shen and R. M. Snapka, DNA sequence specificity for topoisomerase II poisoning by the quinoxaline anticancer drugs XK469 and CQS, Mol. Pharmacol. 63 (2003) 1382–1388; https://doi.org/10.1124/mol.63.6.138210.1124/mol.63.6.138212761349Search in Google Scholar

81. G. Cheng, W. Sa, C. Cao, L. Guo, H. Hao, Z. Liu, X. Wang and Z. Yuan, Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of actions, Front. Pharmacol. 7 (2016) 21 pages; https://doi.org/10.3389/fphar.2016.0006410.3389/fphar.2016.00064480018627047380Search in Google Scholar

82. J. Yang, K. I. Amiri, J. R. Burke, J. A. Schmid and A. Richmond, BMS-345541 target inhibitor of kB kinase and induces apoptosis in melanoma: Involvement of nuclear factor kB and mitochondria pathways, Clin. Cancer Res. 12 (2006) 950–960; https://doi.org/10.1158/1078-0432.CCR-05-122010.1158/1078-0432.CCR-05-1220266825016467110Search in Google Scholar

83. F. Baffert, C. H. Régnier, A. De Pover, C. Pissot-Soldermann, G. A. Tavares, F. Blasco, J. Brueggen, P. Chène, P. Drueckes, D. Erdmann, P. Furet, M. Gerspacher, M. Lang, D. Ledieu, L. Nolan, S. Ruetz, J. Trappe, E. Vangrevelinghe, M. Wartmann, L. Wyder, F. Hofmann and T. Radimerski, Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805, Mol. Cancer Ther. 9 (2010) 1945–1955; https://doi.org/10.1158/1535-7163.MCT-10-005310.1158/1535-7163.MCT-10-005320587663Search in Google Scholar

84. O. Watanabe and H. Oikawa, Diversification of echinomycin molecular structure by way of chemo-enzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway, Curr. Opin. Chem. Biol. 13 (2009) 189–196; https://doi.org/10.1016/j.cbpa.2009.02.01210.1016/j.cbpa.2009.02.01219278894Search in Google Scholar

85. R. M. Rajukar, V. A. Agrawal, S. S. Thonte and R. G. Ingale, Heterocyclic chemistry of quinoxaline and potential activities of quinoxaline derivatives – A review, Pharmacophore1 (2010) 65–76.Search in Google Scholar

86. M. M. Heravi, K. Bakhtiari, M. H. Tehrami, N. M. Javadi and H. A. Oskooie, Facile synthesis of quinoxaline derivatives using o-iodoxybenzoic acid (IBX) at room temperature, Arkivoc26 (2006) 16–22.10.3998/ark.5550190.0007.g02Search in Google Scholar

87. O. O. Ajani, Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine, Eur. J. Med. Chem. 85 (2014) 688–715; https://doi.org/10.1016/j.ejmech.2014.08.03410.1016/j.ejmech.2014.08.03425128670Search in Google Scholar

88. O. O. Ajani, C. A. Obafemi, C. O. Ikpo, K. O. Ajanaku, K. O. Ogunniran and O. O. James, Comparative study of microwave assisted and conventional synthesis of novel 2-quinoxalinone-3-hydrazone derivatives and its spectroscopic properties, Int. J. Phys. Sci. 4 (2009a) 156–164.Search in Google Scholar

89. O. O. Ajani, C. A. Obafemi, C. O. Ikpo, K. O. Ogunniran and O. C. Nwinyi, Synthesis and antibacterial activity of some pyrazol-1-ylquinoxalin-2(1H)-one derivatives, Chem. Heterocycl. Comp. 45 (2009b) 1370–1378; https://doi.org/10.1007/s10593-010-0435-z10.1007/s10593-010-0435-zSearch in Google Scholar

90. S. Sajjadifar, H. Noorizadeh, H. Veisi, O. Louie, M. Avval and M. Rezayati, A facile and efficient method for the synthesis of quinoxaline derivatives using [(sulfooxy) ethyl]sulfamic acid as a novel difunctional bronsted acid, recyclable and organocatalyst, Res. J. Pharm. Biol. Chem. Sci. 4 (2013) 906–916.Search in Google Scholar

91. S. B. Lee, Y. I. Park, M. S. Dong and Y. D. Gong, Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/b-catenin pathway inhibitor in non-small-cell lung cancer cell lines, Bioorg. Med. Chem. Lett. 20 (2010a) 5900–5904; https://doi.org/10.1016/j.bmcl.2010.07.08810.1016/j.bmcl.2010.07.08820729080Search in Google Scholar

92. S. S. Karki, R. Hazare, S. Kumar, V. S. Bhadauria, J. Balzarini and E. De Clercq, Synthesis, anticancer and cytostatic activity of some 6H-indolo [2,3-b] quinoxalines, Acta Pharm. 59 (2009) 431–440; https://doi.org/10.2478/v10007-009-0040-910.2478/v10007-009-0040-919919932Search in Google Scholar

93. Y. B. Lee, Y. D. Gong, H. Yoon, C. H. Ahn, M. K. Jeon and J. Y. Kong, Synthesis and anticancer activity of new 1-[(5- or 6-substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)aryl piperazine derivatives, Bioorg. Med. Chem, 18 (2010b) 7966–7974; https://doi.org/10.1016/j.bmc.2010.09.02810.1016/j.bmc.2010.09.02820943401Search in Google Scholar

94. B. Zarranz, A. Jaso, I. Aldana and A. Monge, Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivative, Bioorg. Med. Chem. 12 (2004) 3711–3721; https://doi.org/10.1016/j.bmc.2004.04.01310.1016/j.bmc.2004.04.01315186857Search in Google Scholar

95. S. Piras, M. Loriga, A. Carta, G. Paglietti, M. P. Costi and S. Ferrari, Novel 3-benzoyl-2-piperazinylquinoxaline derivatives as potential antitumor agents, J. Heterocycl. Chem. 43 (2006) 541–548; https://doi.org/10.1002/jhet.557043030410.1002/jhet.5570430304Search in Google Scholar

96. S. T. Hazeldine, L. Polin, J. Kushner, K. White, T. H. Corbett and J. P. Horwitz, Synthetic modification of the 2-oxypropionic acid moiety in 2-{4-[(7-chloro-2-quinoxalinyl)oxy] phenoxy}propionic acid (XK469), and consequent antitumor effects. Part 4, Bioorg. Med. Chem. 13 (2005) 3910–3920; https://doi.org/10.1016/j.bmc.2005.04.01110.1016/j.bmc.2005.04.01115911307Search in Google Scholar

97. F. Grande, F. Aiello, O. De Grazia, A. Brizzi, A. Garofalo and N. Neamati, Synthesis and antitumor activities of a series of novel quinoxalinhydrazides, Bioorg. Med. Chem. 15 (2007) 288–294; https://doi.org/10.1016/j.bmc.2006.09.07310.1016/j.bmc.2006.09.07317085054Search in Google Scholar

98. G. Moarbess, C. Deleuze-Masquefa, V. Bonnard, S. Gayraud-Paniagua, J. Vidal, F. Bressolle, F. Pinguet and B. Pierre-Antoine, In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives, Bioorg. Med. Chem. 16 (2008) 6601–6610; https://doi.org/10.1016/j.bmc.2008.05.02210.1016/j.bmc.2008.05.02218513976Search in Google Scholar

99. S. Tanimori, T. Nishimura and M. Kirihata, Synthesis of novel quinoxaline derivatives and its cytotoxic activities, Bioorg Med Chem Lett. 19 (2009) 4119–4121; https://doi.org/10.1016/j.bmcl.2009.06.00710.1016/j.bmcl.2009.06.00719539470Search in Google Scholar

100. P. J. Kaboli, A. Rahmat, P. Ismail and K. H. Ling, Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer, Eur. J. Pharmacol. 740 (2014) 584–595; https://doi.org/10.1016/j.ejphar.2014.06.02510.1016/j.ejphar.2014.06.02524973693Search in Google Scholar

101. U. Das, H. N. Pati, A. K. Panda, E. De Clercq and J. Balzarini, J. Molnár, Z. Baráth, I. Ocsovszki, M. Kawase, L. Zhou, H. Sakagami and J. R. Dimmock, 2-(3-Aryl-2-propenoyl)-3-methyl quinoxaline-1,4-dioxides: A novel cluster of tumor-specific cytotoxins which reverse multidrug resistance, Bioorg. Med. Chem. 17 (2009) 3909–3915; https://doi.org/10.1016/j.bmc.2009.04.02110.1016/j.bmc.2009.04.021327658819427790Search in Google Scholar

102. K. Ghattass, S. El-Sitt, K. Zibara, S. Rayes, M. Haddadin, M. El-Sabban and H. Gali-Muhtasib, The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway, Mol. Cancer13 (2014) 12–25; https://doi.org/10.1186/1476-4598-13-1210.1186/1476-4598-13-12393251624461075Search in Google Scholar

103. S. A. Galal, A. S. Abdelsamie, H. Tokuda, N. Suzuki, A. Lida, M. M. Elhefnawi, R. A. Ramadan, M. H. E. Atta and H. I. El Diwani, Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives, Eur. J. Med. Chem. 46 (2011) 327–340; https://doi.org/10.1016/j.ejmech.2010.11.02210.1016/j.ejmech.2010.11.02221145626Search in Google Scholar

104. M. M. Ghorab, F. A. Ragab, H. I. Heiba, M. G. El-Ghazzar and M. G. El-Ghazzar, Synthesis, in-vitro anticancer screening and radiosensitizing evaluation of some new N-(quinoxalin-2-yl) benzene sulfonamide derivatives, Arzneimittelforschung62 (2012) 46–52; https://doi.org/10.1055/s-0031-129549610.1055/s-0031-129549622331763Search in Google Scholar

105. Y. Hu, Q. Xia, S. Shangguan, X. Liu, Y. Hu and R. Sheng, Synthesis and biological evaluation of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives as hypoxic selective anti-tumor agents, Molecules17 (2012) 9683–9696; https://doi.org/10.3390/molecules1708968310.3390/molecules17089683626810722890172Search in Google Scholar

106. B. Solano, V. Junnotula, A. Marin, R. Villar, A. Burguete, E. Vicente, S. Perez-Silanes, I. Aldana, A. Monge, S. Dutta, U. Sarkar and K. S. Gates, Synthesis and biological evaluation of new 2-arylcarbonyl-3-trifluoromethylquinoxaline 1,4-di-N-oxide derivatives and their reduced analogues, J. Med. Chem. 50 (2007) 5485–5492; https://doi.org/10.1021/jm070399310.1021/jm070399317910426Search in Google Scholar

107. B. Zarranz, A. Jaso, I. Aldana and A. Monge, Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives. Bioorg. Med. Chem. 12 (2004) 3711–3721; http://doi.org/10.1016/j.bmc.2004.04.01310.1016/j.bmc.2004.04.01315186857Search in Google Scholar

108. J. Jampilek, Recent advances in design of potential quinoxaline anti-infectives, Curr. Med. Chem. 21 (2014) 4347–4373; https://doi.org/10.2174/092986732166614101119482510.2174/092986732166614101119482525312209Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo