1. bookVolumen 2 (2019): Edición 2 (December 2019)
Detalles de la revista
License
Formato
Revista
eISSN
2668-5124
Primera edición
30 Sep 2019
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

Plant Aquaporins

Publicado en línea: 31 Dec 2019
Volumen & Edición: Volumen 2 (2019) - Edición 2 (December 2019)
Páginas: 36 - 48
Recibido: 12 Dec 2019
Aceptado: 22 Dec 2019
Detalles de la revista
License
Formato
Revista
eISSN
2668-5124
Primera edición
30 Sep 2019
Calendario de la edición
2 veces al año
Idiomas
Inglés

1. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta 1840:1468–1481. http://dx.doi.org/10.1016/j.bbagen.2013.12.00110.1016/j.bbagen.2013.12.00124355433Abierto DOISearch in Google Scholar

2. Agre P (2004) Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. Engil. 43:4278–4290. doi: 10.1002/anie.20046080410.1002/anie.20046080415368374Abierto DOISearch in Google Scholar

3. Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol. 265 (3 Pt 2):F461. doi:10.1152/ajprenal.1993.265.3.F46110.1152/ajprenal.1993.265.3.F4617692747Abierto DOISearch in Google Scholar

4. Balarynová J, Danihlik J, Fellner M (2018) Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato. Acta Physiol Plant 40:27. https://doi.org/10.1007/s11738-017-2602-710.1007/s11738-017-2602-7Abierto DOISearch in Google Scholar

5. Benga G (2012) On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Molecular Aspects of Medicine 33:514–517. http://dx.doi.org/10.1016/j.mam.2012.04.00310.1016/j.mam.2012.04.00322542572Abierto DOISearch in Google Scholar

6. Benga G (2013) Comparative studies of water permeability of red blood cells from humans and over 30 animal species: an overview of 20 years of collaboration with Philip Kuchel. Eur. Biophys. J. 42:33–46. doi: 10.1007/s00249-012-0868-710.1007/s00249-012-0868-723104624Abierto DOISearch in Google Scholar

7. Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I et al (1986a) Water permeability in human erythrocytes: identification of membrane proteins involved in water transport. Eur. J. Cell Biol. 41:252–262. doi: 10.1021/bi00355a01110.1021/bi00355a01130196993011064Abierto DOISearch in Google Scholar

8. Benga G, Popescu O, Pop VI, Holmes RP (1986b) p-(Chloromercuri) benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538. doi: 10.1021/bi00355a0113011064Search in Google Scholar

9. Benga O, Huber V J (2012) Brain water channel proteins in health and disease. Mol. Aspects Med. 33:562–578. doi: 10.1016/j.mam.2012.03.00810.1016/j.mam.2012.03.00822504060Abierto DOISearch in Google Scholar

10. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochimica et Biophysica Acta 1840:1596–1604. http://dx.doi.org/10.1016/j.bbagen.2013.09.01710.1016/j.bbagen.2013.09.01724060746Search in Google Scholar

11. Bienert GP, Heinen RB, Berny MC, Chaumont F (2014) Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide. Biochimica et Biophysica Acta 1838:216–222. http://dx.doi.org/10.1016/j.bbamem.2013.08.01110.1016/j.bbamem.2013.08.01123994602Abierto DOISearch in Google Scholar

12. Daniels MJ, Chrispeels MJ, Yeager M (1999) Projection structure of a plant vacuole membrane aquaporine by electron cryo-crystallography. Journal of Molecular Biology 294(5):1337–1349. https://doi.org/10.1006/jmbi.1999.329310.1006/jmbi.1999.329310600389Abierto DOISearch in Google Scholar

13. Deshmukh RK, Sonah H, Bélanger RR (2016) Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. Front Plant Sci. 7:1896. doi: 10.3389/fpls.2016.0189610.3389/fpls.2016.01896516772728066459Abierto DOISearch in Google Scholar

14. Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S (2015) The enhanced drought tolerance of rice plants under ammonium isrelated to aquaporin (AQP). Plant Science 234:14–21. http://dx.doi.org/10.1016/j.plantsci.2015.01.01610.1016/j.plantsci.2015.01.01625804805Abierto DOISearch in Google Scholar

15. Ding L, Uehlein N, Kaldenhoff R, Guo S, Zhu Y, Kai L (2019) Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiology and Biochemistry 139:152–160. https://doi.org/10.1016/j.plaphy.2019.03.01710.1016/j.plaphy.2019.03.01730889480Abierto DOISearch in Google Scholar

16. Fox AR, Maistriaux LC, Chaumont F (2017) Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Science 264:179–187. http://dx.doi.org/10.1016/j.plantsci.2017.07.02110.1016/j.plantsci.2017.07.02128969798Abierto DOISearch in Google Scholar

17. Frick A, Järvå M, Törnroth-Horsefield S (2013) Structural basis for pH gating of plant aquaporins. FEBS Letters 587:989–993. http://dx.doi.org/10.1016/j.febslet.2013.02.03810.1016/j.febslet.2013.02.03823454640Abierto DOISearch in Google Scholar

18. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta 1788:1213–1228. doi: 10.1016/j.bbamem.2009.03.00910.1016/j.bbamem.2009.03.00919327343Abierto DOISearch in Google Scholar

19. Hachez C, Besserer A, Chevalier AS, Chaumont F (2013) Insights into plant plasma membrane aquaporin trafficking. Trends in Plant Science, 18 (6):344-352. http://dx.doi.org/10.1016/j.tplants.2012.12.00310.1016/j.tplants.2012.12.00323291163Abierto DOISearch in Google Scholar

20. Hernandez-Sanchez IE, Maruri-Lopez I, Molphe-Balch EP, Becerra-Flora A, Jaimes-Miranda F, Jimenez-Bremont JF (2019) Evidence for in vivo interactions between dehydrins and the aquaporin AtPIP2B. Biochemical and Biophysical Research Communications 510:545–550. doi: 10.1016/j.bbrc.2019.01.09510.1016/j.bbrc.2019.01.09530738581Abierto DOISearch in Google Scholar

21. Iglesias-Acosta M, Martínez-Ballesta CM, Teruel JA, Carvajal M (2010) The response of broccoli plants to high temperature and possible role of root aquaporins. Environmental and Experimental Botany 68:83–90. doi: 10.1016/j.envexpbot.2009.10.00710.1016/j.envexpbot.2009.10.007Abierto DOISearch in Google Scholar

22. Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters 574:31–36. doi: 10.1016/j.febslet.2004.08.00410.1016/j.febslet.2004.08.00415358535Abierto DOISearch in Google Scholar

23. Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochimica et Biophysica Acta 1758:1134–1141. doi: 10.1016/j.bbamem.2006.03.01210.1016/j.bbamem.2006.03.01216730645Abierto DOISearch in Google Scholar

24. Kaldenhoff R, Kai L, Uehlein N (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochimica et Biophysica Acta 1840:1592–1595. http://dx.doi.org/10.1016/j.bbagen.2013.09.03710.1016/j.bbagen.2013.09.03724141139Abierto DOISearch in Google Scholar

25. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biological Research 51:4. https://doi.org/10.1186/s40659-018-0152-010.1186/s40659-018-0152-0576931629338771Abierto DOISearch in Google Scholar

26. Kozumi T, Kitagawa Y (2016) Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochemistry and Biophysics Reports 5:353–358. https://doi.org/10.1016/j.bbrep.2016.01.00210.1016/j.bbrep.2016.01.002560035928955842Abierto DOISearch in Google Scholar

27. Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biology 7(206) doi:10.1186/gb-2006-7-2-20610.1186/gb-2006-7-2-206143172716522221Abierto DOISearch in Google Scholar

28. Lambert J, Mejia S, Vojdani A (2019) Plant and human aquaporins: pathogenesis from gut to brain. Immunol Res 67(1):12–20. https://doi.org/10.1007/s12026-018-9046-z10.1007/s12026-018-9046-z30569380Abierto DOISearch in Google Scholar

29. Leitao L, Prista C, Loureiro-Dias MC, Moura TF, Soveral G (2014) The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel. Biochemical and Biophysical Research Communications 450:289–294. http://dx.doi.org/10.1016/j.bbrc.2014.05.12110.1016/j.bbrc.2014.05.12124942877Abierto DOISearch in Google Scholar

30. Li G, Santoni V, Maurel C (2014) Plant aquaporins: Roles in plant physiology. Biochimica et Biophysica Acta 1840:1574–1582. http://dx.doi.org/10.1016/j.bbagen.2013.11.00410.1016/j.bbagen.2013.11.00424246957Abierto DOISearch in Google Scholar

31. Mara de Andrade L, Macedo Nobile P, Vasconcelos Ribeiro R, Nebó Carlos de Oliveira JF, Vargas de Oliveira Figueira A, Tadeu Marques Frigel L, Nunes D, Perecin D, dos Santos Brito M, Célia de Matos Pires R, Guimarães de Andrade Landell M, Creste S (2016) Characterization of PIP2 aquaporins in Saccharum hybrids. Plant Gene 5:31–37. http://dx.doi.org/10.1016/j.plgene.2015.11.00410.1016/j.plgene.2015.11.004Abierto DOISearch in Google Scholar

32. Martinez-Ballesta M del C, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Science 217-218:71–77.http://dx.doi.org/10.1016/j.plantsci.2013.12.00610.1016/j.plantsci.2013.12.006Abierto DOISearch in Google Scholar

33. Mateluna P, Salvatierra A, Solis S, Nuñez G, Pimentel P (2018) Involvement of aquaporin NIP1;1 in the contrasting tolerance response to root hypoxia in Prunus rootstocks. Journal of Plant Physiology 228:19–28. https://doi.org/10.1016/j.jplph.2018.05.00110.1016/j.jplph.2018.05.001Abierto DOISearch in Google Scholar

34. Maurel C (2007) Plant aquaporins: Novel functions and regulation properties. FEBS Letters 581:2227–2236. doi: 10.1016/j.febslet.2007.03.02110.1016/j.febslet.2007.03.021Abierto DOISearch in Google Scholar

35. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev. 95(4):1321 New challenges in plant aquaporin biotechnology. Plant Science 1358. doi: 10.1152/physrev.00008.201510.1152/physrev.00008.2015Abierto DOISearch in Google Scholar

36. Maurel C, Reizer J, Schroeder JL, Chrispeels MJ (1993) The vascular membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12:2241–224710.1002/j.1460-2075.1993.tb05877.xAbierto DOISearch in Google Scholar

37. Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology 12:690–698. doi: 10.1016/j.pbi.2009.09.00210.1016/j.pbi.2009.09.002Abierto DOISearch in Google Scholar

38. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59:595–624. doi: 10.1146/annurev.arplant.59.032607.09273410.1146/annurev.arplant.59.032607.092734Abierto DOISearch in Google Scholar

39. Nada RM, Abogadallah GM (2019) Contrasting root traits and native regulation of aquaporin differentially determine the outcome of overexpressing a single aquaporin (OsPIP2;4) in two rice cultivars. Protoplasma 1–13. https://doi.org/10.1007/s00709-019-01468-x10.1007/s00709-019-01468-xAbierto DOISearch in Google Scholar

40. Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11:535–544. doi: 10.1016/S1474-4422(12)70133-310.1016/S1474-4422(12)70133-322608667Abierto DOISearch in Google Scholar

41. Pawłowicz I, Masajada K (2019) Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 687:166–172. https://doi.org/10.1016/j.gene.2018.11.03110.1016/j.gene.2018.11.03130445023Abierto DOISearch in Google Scholar

42. Piotrovskii MS, Lapshin NK, Andreev IM, Trofimova MS (2019) Role of PIPAquaporin phosphorylation in redox-dependent modulation of osmotic water permeability in plasmalemma from roots of pea seedlings. Russ J Plant Physiol 66:637–645. https://doi.org/10.1134/S102144371904011310.1134/S1021443719040113Abierto DOISearch in Google Scholar

43. Ranganathan K, Kayal WE, Cooke JEK, Zwiazek JJ (2016) Response of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature. Journal of Plant Physiology 192:98–104. https://doi.org/10.1016/j.jplph.2016.02.00110.1016/j.jplph.2016.02.00126895330Abierto DOISearch in Google Scholar

44. Rouge P, Barre A (2008) A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants. Biochemical and Biophysical Research Communications 367:60–66. doi: 10.1016/j.bbrc.2007.12.07910.1016/j.bbrc.2007.12.07918155659Abierto DOISearch in Google Scholar

45. Shapiguzov YA (2004) Aquaporins: Structure, Systematics, and Regulatory Features. Russian Journal of Plant Physiology 51 (1): 127–137. doi: 10.1023/B:RUPP.0000011313.02617.4910.1023/B:RUPP.0000011313.02617.49Abierto DOISearch in Google Scholar

46. Sutka M, Amodeo G, Ozu M (2017) Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 9 (5):545–562. https://doi.org/10.1007/s12551-017-0313-310.1007/s12551-017-0313-3566204928871493Abierto DOISearch in Google Scholar

47. Tan X, Xu H, Khan S, Equiza MA, Lee SH, Vaziriyeganeh M, Zwiazek JJ (2018) Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology 227:20–30. https://doi.org/10.1016/j.jplph.2018.05.00310.1016/j.jplph.2018.05.00329779706Abierto DOISearch in Google Scholar

48. Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol. 14:78–85. doi: 10.1016/j.tim.2005.12.00110.1016/j.tim.2005.12.0011640652916406529Abierto DOISearch in Google Scholar

49. Venkatesh J, Yu J-W, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiology and Biochemistry 73:392-404. http://dx.doi.org/10.1016/j.plaphy.2013.10.02510.1016/j.plaphy.2013.10.02524215931Abierto DOISearch in Google Scholar

50. Verdoucq L, Rodrigues O, Martiniere A, Luu D-T, Maurel C (2014) Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. Current Opinion in Plant Biology 22:101–107. http://dx.doi.org/10.1016/j.pbi.2014.09.01110.1016/j.pbi.2014.09.01125299641Abierto DOISearch in Google Scholar

51. Verkman AS (2013) Aquaporins. Curr Biol. 23(2): R52–R55. doi: 10.1016/j.cub.2012.11.02510.1016/j.cub.2012.11.025359090423347934Abierto DOISearch in Google Scholar

52. Wudick MM, Li X, Valentini V, Geldner N, Chory J, Lin J, Maurel C, Luu D-T (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol. Plant. 8:1103–1114. http://dx.doi.org/10.1016/j.molp.2015.02.01710.1016/j.molp.2015.02.01725749111Search in Google Scholar

53. Wudick MM, Luu D-T, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytologist 184 (2):289-302, https://doi.org/10.1111/j.1469-8137.2009.02985.x10.1111/j.1469-8137.2009.02985.x19674338Abierto DOISearch in Google Scholar

54. Yaneff A, Sigaut L, Gómez N, Fandiño CA, Alleva K, Pietrasanta LI, Amodeo G (2016) Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing. Biochimica et Biophysica Acta 1858:2778–2787. http://dx.doi.org/10.1016/j.bbamem.2016.08.00210.1016/j.bbamem.2016.08.00227521486Abierto DOISearch in Google Scholar

55. Yaneff A, Vitali V, Amodeo G (2015) PIP1 aquaporins: intrinsec water channels or PIP2 aquaporin modulators? FEBS Letters 589:3508–3515. http://dx.doi.org/10.1016/j.febslet.2015.10.01810.1016/j.febslet.2015.10.01826526614Abierto DOISearch in Google Scholar

56. Yoo Y-J, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Lee DW, Lee J, Lee Y, Lee J, Kim JS, Cho Y, Han J-K, Hwang I (2016) Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol. Plant. 9:1004–1017. http://dx.doi.org/10.1016/j.molp.2016.04.01210.1016/j.molp.2016.04.01227142778Abierto DOISearch in Google Scholar

57. Yue C, Cao H, Wang L, Zhou Y, Hao X, Zeng J, Wang X, Yang Y (2014) Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant Physiology and Biochemistry 83:65–76. http://dx.doi.org/10.1016/j.plaphy.2014.07.01110.1016/j.plaphy.2014.07.01125093260Abierto DOISearch in Google Scholar

58. Zargar SM, Nagar P, Deshmukh R, Nazir M, Wani AA, Masoodi KZ, Agrawal GK, Rakwal R (2017) Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance. Journal of Proteomics 169:233–238. http://dx.doi.org/10.1016/j.jprot.2017.04.01010.1016/j.jprot.2017.04.01028412527Abierto DOISearch in Google Scholar

59. Zhang B, Xie L, Sun T, Ding B, Li Y, Zhang Y (2019) Chrysanthemum morifolium aquaporin genes CmPIP1 and CmPIP2 are involved in tolerance to salt stress. Scientia Horticulturae 256 (108627):1-8. https://doi.org/10.1016/j.scienta.2019.10862710.1016/j.scienta.2019.108627Search in Google Scholar

60. Zhu F, Ming R (2019) Global identification and expression analysis of pineapple aquaporins revealed their roles in CAM photosynthesis, boron uptake and fruit domestication. Euphytica 215:132. https://doi.org/10.1007/s10681-019-2451-010.1007/s10681-019-2451-0Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo