Cite

AbuOun M., Anjum M.F. i wsp.: mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 73, 2904 (2018)AbuOunM.AnjumM.F.i wsp.mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015J. Antimicrob. Chemother.732904201810.1093/jac/dky272614820730053008Search in Google Scholar

Albornoz E., Martino F., Tijet N., Corso A., Belder D.D., Gomez S., Melano R.G., Petroni A.: qnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of Enterobacter species. Antimicrob. Agents Chemother. 61, 1:e02555–16 (2017)AlbornozE.MartinoF.TijetN.CorsoA.BelderD.D.GomezS.MelanoR.G.PetroniA.qnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of Enterobacter speciesAntimicrob. Agents Chemother.611e0255516201710.1128/AAC.02555-16540460128193666Search in Google Scholar

Aldred K.J., Kerns R.J., Osheroff N.: Mechanism of quinolone action and resistance. Biochemistry, 53, 1565–1574 (2014)AldredK.J.KernsR.J.OsheroffN.Mechanism of quinolone action and resistanceBiochemistry5315651574201410.1021/bi5000564398586024576155Search in Google Scholar

Arnold R.S., Thom K.A., Sharma S., Phillips M., Johnson J.K., Morgan D.J.: Emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. South. Med. J. 104, 40–45 (2011)ArnoldR.S.ThomK.A.SharmaS.PhillipsM.JohnsonJ.K.MorganD.J.Emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteriaSouth. Med. J.1044045201110.1097/SMJ.0b013e3181fd7d5a307586421119555Search in Google Scholar

Bambeke F.V., Michot J.-M., Eldere J.V., Tulkens P.M.: Quinolones in 2005: an update Clin. Microbiol. Infect. 11, 256–280 (2005)BambekeF.V.MichotJ.-M.EldereJ.V.TulkensP.M.Quinolones in 2005: an updateClin. Microbiol. Infect.11256280200510.1111/j.1469-0691.2005.01131.x15760423Search in Google Scholar

Banerjee S., Sengupta M., Sarker T.K.: Fosfomycin susceptibility among multidrug-resistant, extended-spectrum beta-lactamase-producing, carbapenem-resistant uropathogens. Indian. J. Urol. 33, 149–154 (2017)BanerjeeS.SenguptaM.SarkerT.K.Fosfomycin susceptibility among multidrug-resistant, extended-spectrum beta-lactamase-producing, carbapenem-resistant uropathogensIndian. J. Urol.33149154201710.4103/iju.IJU_285_16539640428469304Search in Google Scholar

Batchelor M., Hopkins K.L., Threlfall E.J., Clifton-Hadley F.A., Stallwood A.D., Davies R.H., Liebana E.: Characterization of AmpC-mediated resistance in clinical Salmonella isolates recovered from humans during the period 1992 to 2003 in England and Wales. J. Clin. Microbiol. 43, 2261–2265 (2005)BatchelorM.HopkinsK.L.ThrelfallE.J.Clifton-HadleyF.A.StallwoodA.D.DaviesR.H.LiebanaE.Characterization of AmpC-mediated resistance in clinical Salmonella isolates recovered from humans during the period 1992 to 2003 in England and WalesJ. Clin. Microbiol.4322612265200510.1128/JCM.43.5.2261-2265.2005115378815872253Search in Google Scholar

Becker K., van Alen S., Idelevich E.A., Schleimer N., Seggewiss J., Mellmann A., Kaspar U., Peters G.: Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 24, 242–248 (2018)BeckerK.van AlenS.IdelevichE.A.SchleimerN.SeggewissJ.MellmannA.KasparU.PetersG.Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureusEmerg. Infect. Dis.24242248201810.3201/eid2402.171074578290629350135Search in Google Scholar

Binda E., Marinelli F., Marcone G.L.: Old and new glycopeptide antibiotics: action and resistance Antibiotics, 3, 572–594 (2014)BindaE.MarinelliF.MarconeG.L.Old and new glycopeptide antibiotics: action and resistanceAntibiotics3572594201410.3390/antibiotics3040572479038227025757Search in Google Scholar

Borowiak M., Fischer J., Hammerl J.A., Hendriksen R.S., Szabo I., Malorny B.: Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 72, 3317–3324 (2017)BorowiakM.FischerJ.HammerlJ.A.HendriksenR.S.SzaboI.MalornyB.Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi BJ. Antimicrob. Chemother.7233173324201710.1093/jac/dkx32728962028Search in Google Scholar

Bozdogan B., Appelbaum P.C.: Oxazolidinones: activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents. 23, 113–119 (2004)BozdoganB.AppelbaumP.C.Oxazolidinones: activity, mode of action, and mechanism of resistanceInt. J. Antimicrob. Agents.23113119200410.1016/j.ijantimicag.2003.11.003Search in Google Scholar

Brodolin K.: Antibiotics targeting bacterial RNA polymerase. Antibiotics: Targets, Mechanisms and Resistance, 12, DOI/10.1002/9783527659685.ch12 (2013)BrodolinK.Antibiotics targeting bacterial RNA polymeraseAntibiotics: Targets, Mechanisms and Resistance1210.1002/9783527659685.ch122013Open DOISearch in Google Scholar

Bryan L.E., Bedard J.: Impermeability to quinolones in gram-positive and gram-negative bacteria. Eur. J. Clin. Microbiol. Infect. Dis. 10, 232–239 (1991)BryanL.E.BedardJ.Impermeability to quinolones in gram-positive and gram-negative bacteriaEur. J. Clin. Microbiol. Infect. Dis.10232239199110.1007/BF01966995Search in Google Scholar

Bush K., Jacoby G.A.: Updated functional classification of β-Lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010)BushK.JacobyG.A.Updated functional classification of β-LactamasesAntimicrob. Agents Chemother.54969976201010.1128/AAC.01009-09Search in Google Scholar

Canton R., Coque T.M.: The CTX-M beta-lactamase pandemic. Curr. Opin. Microbiol. 9, 466–475 (2006)CantonR.CoqueT.M.The CTX-M beta-lactamase pandemicCurr. Opin. Microbiol.9466475200610.1016/j.mib.2006.08.011Search in Google Scholar

Canu A., Malbruny B., Coquemont M., Davies T.A., Appelbaum P.C., Leclercq R.: Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 125–131 (2002)CanuA.MalbrunyB.CoquemontM.DaviesT.A.AppelbaumP.C.LeclercqR.Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniaeAntimicrob. Agents Chemother.46125131200210.1128/AAC.46.1.125-131.2002Search in Google Scholar

Carattoli A., Villa L., Feudi C., Curcio L., Orsini S., Luppi A., Pezzotti G., Magistrali C.F.: Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 22(31), 30589. DOI/10.2807/1560-7917.ES.2017.22.31.30589 (2017)CarattoliA.VillaL.FeudiC.CurcioL.OrsiniS.LuppiA.PezzottiG.MagistraliC.F.Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016Euro Surveill.22313058910.2807/1560-7917.ES.2017.22.31.305892017Open DOISearch in Google Scholar

Carroll L.M., Gaballa A., Guldimann C., Sullivan G., Henderson L.O., Wiedmann M.: Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio, 10 (3) e00853–19; DOI: 10.1128/mBio.00853-19 (2019)CarrollL.M.GaballaA.GuldimannC.SullivanG.HendersonL.O.WiedmannM.Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolatemBio103e008531910.1128/mBio.00853-192019Open DOISearch in Google Scholar

Cassini A., Monnet L.D. I wsp.: Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019)CassiniA.MonnetL.D.i wsp.Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysisLancet Infect. Dis.195666201910.1016/S1473-3099(18)30605-4Search in Google Scholar

Castañeda-García A., Blázquez J., Rodríguez-Rojas A.: Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics, 2, 217–236 (2013)Castañeda-GarcíaA.BlázquezJ.Rodríguez-RojasA.Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistanceAntibiotics2217236201310.3390/antibiotics2020217479033627029300Search in Google Scholar

Cavaco L.M., Hasman H., Xia S., Aarestrup F.M.: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608 (2009)CavacoL.M.HasmanH.XiaS.AarestrupF.M.qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human originAntimicrob. Agents Chemother.53603608200910.1128/AAC.00997-08263062819029321Search in Google Scholar

Centers for Disease Control and Prevention. Antibiotic Resistance Threats In The United States, 2013, 1–114, https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (26.11.2019)Centers for Disease Control and PreventionAntibiotic Resistance Threats In The United States20131114https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (26.11.2019)Search in Google Scholar

Champoux J.J.: DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 70, 369–413 (2001)ChampouxJ.J.DNA topoisomerases: Structure, function, and mechanismAnnu. Rev. Biochem.70369413200110.1146/annurev.biochem.70.1.36911395412Search in Google Scholar

Chancey S.T., Zahner D., Stephens D.S.: Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol. 7, 959–978 (2012)ChanceyS.T.ZahnerD.StephensD.S.Acquired inducible antimicrobial resistance in Gram-positive bacteriaFuture Microbiol.7959978201210.2217/fmb.12.63346449422913355Search in Google Scholar

Correia S., Poeta P., Hebraud M., Capelo J.L., Igrejas G.: Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559 (2017)CorreiaS.PoetaP.HebraudM.CapeloJ.L.IgrejasG.Mechanisms of quinolone action and resistance: where do we stand?J. Med. Microbiol.66551559201710.1099/jmm.0.00047528504927Search in Google Scholar

Costa S.S., Viveiros M., Amaral L., Couto I.: Multidrug efflux pumps in Staphylococcus aureus: an Update. Open. Microbiol. J. 7, 59–71 (2013)CostaS.S.ViveirosM.AmaralL.CoutoI.Multidrug efflux pumps in Staphylococcus aureus: an UpdateOpen. Microbiol. J.75971201310.2174/1874285801307010059361754323569469Search in Google Scholar

Cui L., Tominaga E., Neoh H.M., Hiramatsu K.: Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 1079–1082 (2006)CuiL.TominagaE.NeohH.M.HiramatsuK.Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureusAntimicrob. Agents Chemother.5010791082200610.1128/AAC.50.3.1079-1082.2006142643616495273Search in Google Scholar

Dalmolin T.V., Lima-Morales D.D., Barth A.L.: Plasmid-mediated Colistin Resistance: What Do We Know? J. Infectiology, 1, 16–22 (2018)DalmolinT.V.Lima-MoralesD.D.BarthA.L.Plasmid-mediated Colistin Resistance: What Do We Know?J. Infectiology11622201810.29245/2689-9981/2018/2.1109Search in Google Scholar

Deng M., Li L.J. i wsp.: Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob. Agents Chemother. 58, 297–303 (2014)DengM.LiL.J.i wsp.Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospitalAntimicrob. Agents Chemother.58297303201410.1128/AAC.01727-13391073724165187Search in Google Scholar

Edelstein P.H.: Pneumococcal resistance to macrolides, lincosamides, ketolides, and streptogramin B agents: molecular mechanisms and resistance phenotypes. Clin. Infect. Dis. 38 Suppl 4, S322–327 (2004)EdelsteinP.H.Pneumococcal resistance to macrolides, lincosamides, ketolides, and streptogramin B agents: molecular mechanisms and resistance phenotypesClin. Infect. Dis.38Suppl 4S322327200410.1086/38268715127365Search in Google Scholar

Edoo Z., Arthur M., Hugonnet J.-E.: Reversible inactivation of a peptidoglycan transpeptidase by a β-lactam antibiotic mediated by β-lactam-ring recyclization in the enzyme active site. Sci. Rep. 7, DOI:10.1038/s41598-017-09341-8EdooZ.ArthurM.HugonnetJ.-E.Reversible inactivation of a peptidoglycan transpeptidase by a β-lactam antibiotic mediated by β-lactam-ring recyclization in the enzyme active siteSci. Rep.710.1038/s41598-017-09341-8556724928831100Open DOISearch in Google Scholar

Enne V.I., Delsol A.A., Roe J.M., Bennett P.M.: Rifampicin resistance and its fitness cost in Enterococcus faecium. J. Antimicrob. Chemother. 53, 203–207 (2004)EnneV.I.DelsolA.A.RoeJ.M.BennettP.M.Rifampicin resistance and its fitness cost in Enterococcus faeciumJ. Antimicrob. Chemother.53203207200410.1093/jac/dkh044Search in Google Scholar

European Centre for Disease Prevention and Control/European Medicines Agency: Joint Technical Report: The bacterial challenge: time to react. 2009 https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (26.11.2019)European Centre for Disease Prevention and Control/European Medicines AgencyJoint Technical Report: The bacterial challenge: time to react2009https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (26.11.2019)Search in Google Scholar

Falagas M.E., Kastoris A.C., Kapaskelis A.M., Karageorgopoulos D.E.: Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect. Dis. 10, 43–50 (2010)FalagasM.E.KastorisA.C.KapaskelisA.M.KarageorgopoulosD.E.Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic reviewLancet Infect. Dis.104350201010.1016/S1473-3099(09)70325-1Search in Google Scholar

Falagas M.E., Vouloumanou E.K., Samonis G., Konstantinos Z. Vardakasa: Fosfomycin Clin. Microbiol. Rev. 29, 321–347 (2016)FalagasM.E.VouloumanouE.K.SamonisG.VardakasaKonstantinos Z.FosfomycinClin. Microbiol. Rev.29321347201610.1128/CMR.00068-15478688826960938Search in Google Scholar

Fisher J.F., Mobashery S.: beta-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 6, a025221 (2016)FisherJ.F.MobasheryS.beta-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosisCold Spring Harb. Perspect. Med.6a025221201610.1101/cshperspect.a025221485279627091943Search in Google Scholar

Fu Z., Ma Y., Chen C., Guo Y., Hu F., Liu Y., Xu X., Wang M.: Prevalence of Fosfomycin Resistance and Mutations in murA, glpT, and uhpT in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Blood and Cerebrospinal Fluid Samples. Front. Microbiol. 6, 1544 (2015)FuZ.MaY.ChenC.GuoY.HuF.LiuY.XuX.WangM.Prevalence of Fosfomycin Resistance and Mutations in murAglpT, and uhpT in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Blood and Cerebrospinal Fluid SamplesFront. Microbiol.61544201510.3389/fmicb.2015.01544470727526793179Search in Google Scholar

Fyfe C., Grossman T.H., Kerstein K., Sutcliffe J.: Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb. Perspect. Med. 3; 6(10), a025395. DOI: 10.1101/cshperspect.a025395 (2016)FyfeC.GrossmanT.H.KersteinK.SutcliffeJ.Resistance to macrolide antibiotics in public health pathogensCold Spring Harb. Perspect. Med.3610a02539510.1101/cshperspect.a0253952016504668627527699Open DOISearch in Google Scholar

Garneau-Tsodikova S., Labby K.J.: Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 7(1): 11–27. DOI:10.1039/C5MD00344J (2016)Garneau-TsodikovaS.LabbyK.J.Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectivesMedchemcomm.71112710.1039/C5MD00344J2016475212626877861Open DOISearch in Google Scholar

Gill M.J., Brenwald N.P., Wise R.: Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43, 187–189 (1999)GillM.J.BrenwaldN.P.WiseR.Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniaeAntimicrob. Agents Chemother.43187189199910.1128/AAC.43.1.187890479869592Search in Google Scholar

Goldstein B.P.: Resistance to rifampicin: a review. J. Antibiot. 67, 625–630 (2014)GoldsteinB.P.Resistance to rifampicin: a reviewJ. Antibiot.67625630201410.1038/ja.2014.10725118103Search in Google Scholar

Greer N.D.: Tigecycline (Tygacil): the first in the glycylcycline class of antibiotics. Proc. (Bayl Univ Med Cent). 19, 155–161 (2006)GreerN.D.Tigecycline (Tygacil): the first in the glycylcycline class of antibioticsProc. (Bayl Univ Med Cent)19155161200610.1080/08998280.2006.11928154142617216609746Search in Google Scholar

Gupta S., Govil D., Kakar P.N., Prakash O., Arora D., Das S., Govil P., Malhotra A.: Colistin and polymyxin B: a re-emergence. Indian J. Crit. Care. Med. 13, 49–53 (2009)GuptaS.GovilD.KakarP.N.PrakashO.AroraD.DasS.GovilP.MalhotraA.Colistin and polymyxin B: a re-emergenceIndian J. Crit. Care. Med.134953200910.4103/0972-5229.56048277224019881183Search in Google Scholar

Hanssen A.M., Ericson Sollid J.U.: SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46, 8–20 (2006)HanssenA.M.Ericson SollidJ.U.SCCmec in staphylococci: genes on the moveFEMS Immunol. Med. Microbiol.46820200610.1111/j.1574-695X.2005.00009.x16420592Search in Google Scholar

Hata M., Suzuki M., Matsumoto M., Takahashi M., Sato K., Ibe S., Sakae K.: Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob. Agents Chemother. 49, 801–803 (2005)HataM.SuzukiM.MatsumotoM.TakahashiM.SatoK.IbeS.SakaeK.Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2bAntimicrob. Agents Chemother.49801803200510.1128/AAC.49.2.801-803.200554736115673773Search in Google Scholar

Hawkey P.M.: The origins and molecular basis of antibiotic resistance. BMJ, 317, 657–660 (1998)HawkeyP.M.The origins and molecular basis of antibiotic resistanceBMJ317657660199810.1136/bmj.317.7159.65711138389727999Search in Google Scholar

Hooper D.C., Jacoby G.A.: Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, 1–22 (2016)HooperD.C.JacobyG.A.Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistanceCold Spring Harb. Perspect. Med.6122201610.1101/cshperspect.a025320500806027449972Search in Google Scholar

Howden B.P., Stineare T.P. i wsp.: Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 7, e1002359 (2011)HowdenB.P.StineareT.P.i wsp.Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKRPLoS Pathog.7e1002359201110.1371/journal.ppat.1002359321310422102812Search in Google Scholar

Hrast M., Sosic I., Šink R., Gobec S.: Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg. Chem. 55, 2–15 doi: 10.1016/j.bioorg.2014.03.008 (2014)HrastM.SosicI.ŠinkR.GobecS.Inhibitors of the peptidoglycan biosynthesis enzymes MurA-FBioorg. Chem.5521510.1016/j.bioorg.2014.03.008201424755374Open DOISearch in Google Scholar

Hugonnet J.E., Arthur M. i wsp.: Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coli. Elife, 5, e19469 (2016)HugonnetJ.E.ArthurM.i wsp.Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coliElife5e19469201610.7554/eLife.19469508985727767957Search in Google Scholar

Jacoby G.A.: AmpC beta-lactamases. Clin. Microbiol. Rev. 22, 161–182 (2009)JacobyG.A.AmpC beta-lactamasesClin. Microbiol. Rev.22161182200910.1128/CMR.00036-08262063719136439Search in Google Scholar

Jacoby G.A., Walsh K.E., Mills D.M., Walker V.J., Oh H., Robicsek A., Hooper D.C.: qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob. Agents Chemother. 50, 1178–1182 (2006)JacobyG.A.WalshK.E.MillsD.M.WalkerV.J.OhH.RobicsekA.HooperD.C.qnrB, another plasmid-mediated gene for quinolone resistanceAntimicrob. Agents Chemother.5011781182200610.1128/AAC.50.4.1178-1182.2006142691516569827Search in Google Scholar

Kim D.H., Lees W.J., Kempsell K.E., Lane W.S., Duncan K., Walsh C.T.: Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP--GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry, 35, 4923–4928 (1996)KimD.H.LeesW.J.KempsellK.E.LaneW.S.DuncanK.WalshC.T.Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP--GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycinBiochemistry3549234928199610.1021/bi952937w8664284Search in Google Scholar

Kocsis B., Szabó D.: Antibiotic resistance mechanisms in Enterobacteriaceae. In: Mendez-Vilas, A., ed., Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, Spain: Formatex Research Center, 251–257 (2013)KocsisB.SzabóD.Antibiotic resistance mechanisms in EnterobacteriaceaeMendez-VilasA.Microbial Pathogens and Strategies for Combating Them: Science, Technology and EducationSpainFormatex Research Center2512572013Search in Google Scholar

Kohanski M.A., Dwyer D.J., Collins J.J.: How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435 (2010)KohanskiM.A.DwyerD.J.CollinsJ.J.How antibiotics kill bacteria: from targets to networksNat. Rev. Microbiol.8423435201010.1038/nrmicro2333289638420440275Search in Google Scholar

Kuga A., Okamoto R., Inoue M.: ampR gene mutations that greatly increase class C beta–lactamase activity in Enterobacter cloacae. Antimicrob. Agents Chemother. 44, 561–567 (2000)KugaA.OkamotoR.InoueM.ampR gene mutations that greatly increase class C beta–lactamase activity in Enterobacter cloacaeAntimicrob. Agents Chemother.44561567200010.1128/AAC.44.3.561-567.20008972610681318Search in Google Scholar

Langaee T.Y., Dargis M., Huletsky A.: An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression. Antimicrob. Agents Chemother. 42, 3296–3300 (1998)LangaeeT.Y.DargisM.HuletskyA.An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expressionAntimicrob. Agents Chemother.4232963300199810.1128/AAC.42.12.32961060409835532Search in Google Scholar

Leclercq R.: Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 34, 482–492 (2002)LeclercqR.Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implicationsClin. Infect. Dis.34482492200210.1086/32462611797175Search in Google Scholar

Leclercq R., Courvalin P.: Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46, 2727–2734 (2002)LeclercqR.CourvalinP.Resistance to macrolides and related antibiotics in Streptococcus pneumoniaeAntimicrob. Agents Chemother.4627272734200210.1128/AAC.46.9.2727-2734.200212741512183222Search in Google Scholar

Li X.-Z., Nikaido H.: Efflux-Mediated Drug Resistance in Bacteria. Drugs, 69, 1555–1623 (2009)LiX.-Z.NikaidoH.Efflux-Mediated Drug Resistance in BacteriaDrugs6915551623200910.2165/11317030-000000000-00000284739719678712Search in Google Scholar

Lister P.D., Wolter D.J., Hanson N.D.: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582–610 (2009)ListerP.D.WolterD.J.HansonN.D.Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanismsClin. Microbiol. Rev.22582610200910.1128/CMR.00040-09277236219822890Search in Google Scholar

Long K.S., Poehlsgaard J., Kehrenberg C., Schwarz S., Vester B.: The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptograrnin A antibiotics. Antimicrob. Agents Chemother. 50, 2500–2505 (2006)LongK.S.PoehlsgaardJ.KehrenbergC.SchwarzS.VesterB.The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptograrnin A antibioticsAntimicrob. Agents Chemother.5025002505200610.1128/AAC.00131-06148976816801432Search in Google Scholar

Long K.S., Vester B.: Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 56, 603–612 (2012)LongK.S.VesterB.Resistance to linezolid caused by modifications at its binding site on the ribosomeAntimicrob. Agents Chemother.56603612201210.1128/AAC.05702-11326426022143525Search in Google Scholar

Lonks J.R., Goldmann D.A.: Telithromycin: a ketolide antibiotic for treatment of respiratory tract infections. Clin. Infect. Dis. 40, 1657–1664 (2005)LonksJ.R.GoldmannD.A.Telithromycin: a ketolide antibiotic for treatment of respiratory tract infectionsClin. Infect. Dis.4016571664200510.1086/430067Search in Google Scholar

MacNair C.R., Stokes J.M., Carfrae L.A., Fiebig-Comyn A.A., Coombes B.K., Mulvey M.R., Brown E.D.: Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 9, 1–8 (2018)MacNairC.R.StokesJ.M.CarfraeL.A.Fiebig-ComynA.A.CoombesB.K.MulveyM.R.BrownE.D.Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibioticsNat. Commun.918201810.1038/s41467-018-02875-zSearch in Google Scholar

Malinga L.A., Stoltz A., Walt M.v.d.: Efflux pump mediated second-line tuberculosis drug resistance. Mycobact. Dis. 6, 1–9 (2016)MalingaL.A.StoltzA.WaltM.v.d.Efflux pump mediated second-line tuberculosis drug resistanceMycobact. Dis.6192016Search in Google Scholar

Martinez-Martinez L., Pascual A., Jacoby G.A.: Quinolone resistance from a transferable plasmid. Lancet, 351, 797–799 (1998)Martinez-MartinezL.PascualA.JacobyG.A.Quinolone resistance from a transferable plasmidLancet351797799199810.1016/S0140-6736(97)07322-4Search in Google Scholar

Miller W.R., Bayer A.S., Arias C.A.: Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb. Perspect. Med. 6, a026997 (2016)MillerW.R.BayerA.S.AriasC.A.Mechanism of action and resistance to daptomycin in Staphylococcus aureus and EnterococciCold Spring Harb. Perspect. Med.6a026997201610.1101/cshperspect.a026997508850727580748Search in Google Scholar

Miller W.R., Munita J.M., Arias C.A.: Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti. Infect. Ther. 12, 1221–1236 (2014)MillerW.R.MunitaJ.M.AriasC.A.Mechanisms of antibiotic resistance in enterococciExpert Rev. Anti. Infect. Ther.1212211236201410.1586/14787210.2014.956092443316825199988Search in Google Scholar

Mingeot-Leclercq M.P., Glupczynski Y., Tulkens P.M.: Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 43, 727–737 (1999)Mingeot-LeclercqM.P.GlupczynskiY.TulkensP.M.Aminoglycosides: Activity and resistanceAntimicrob. Agents Chemother.43727737199910.1128/AAC.43.4.7278919910103173Search in Google Scholar

Moffatt J.H., Harper M., Harrison P., Hale J.D.F., Vinogradov E., Seemann T., Henry R., Crane B., Michael F.S., Cox A.D. et al.: Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob. Agents Chemother. 54, 4971–4977 (2010)MoffattJ.H.HarperM.HarrisonP.HaleJ.D.F.VinogradovE.SeemannT.HenryR.CraneB.MichaelF.S.CoxA.D.Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide productionAntimicrob. Agents Chemother.5449714977201010.1128/AAC.00834-10298123820855724Search in Google Scholar

Nilsson A.I., Berg O.G., Aspevall O., Kahlmeter G., Andersson D.I.: Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 47, 2850–2858 (2003)NilssonA.I.BergO.G.AspevallO.KahlmeterG.AnderssonD.I.Biological costs and mechanisms of fosfomycin resistance in Escherichia coliAntimicrob. Agents Chemother.4728502858200310.1128/AAC.47.9.2850-2858.200318264512936984Search in Google Scholar

Noskin G.A.: Tigecycline: a new glycylcycline for treatment of serious infections. Clin. Infect. Dis. 41 Suppl 5, S303–314 (2005)NoskinG.A.Tigecycline: a new glycylcycline for treatment of serious infectionsClin. Infect. Dis.41Suppl 5S303314200510.1086/43167216080069Search in Google Scholar

O’Neill J.: Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, (2014) https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (26.11.2019)O’NeillJ.Antimicrobial resistance: tackling a crisis for the health and wealth of nationsReview on Antimicrobial Resistance2014https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (26.11.2019)Search in Google Scholar

Ojo K.K., Striplin M.J., Ulep C.C., Close N.S., Zittle J., Luis H., Bernardo M., Leitao J., Roberts M.C.: Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob. Agents Chemother. 50, 1089–1091 (2006)OjoK.K.StriplinM.J.UlepC.C.CloseN.S.ZittleJ.LuisH.BernardoM.LeitaoJ.RobertsM.C.Staphylococcus efflux msr(A) gene characterized in StreptococcusEnterococcusCorynebacterium, and Pseudomonas isolatesAntimicrob. Agents Chemother.5010891091200610.1128/AAC.50.3.1089-1091.2006142644016495276Search in Google Scholar

Olaitan A.O., Morand S., Rolain J.M.: Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol, 5, 643 (2014)OlaitanA.O.MorandS.RolainJ.M.Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteriaFront Microbiol5643201410.3389/fmicb.2014.00643424453925505462Search in Google Scholar

Olson M.W., Ruzin A., Feyfant E., Rush T.S., 3rd, O’Connell J., Bradford P.A.: Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob. Agents Chemother. 50, 2156–2166 (2006)OlsonM.W.RuzinA.FeyfantE.RushT.S.3rdO’ConnellJ.BradfordP.A.Functional, biophysical, and structural bases for antibacterial activity of tigecyclineAntimicrob. Agents Chemother.5021562166200610.1128/AAC.01499-05147913316723578Search in Google Scholar

Pages J.M., Lavigne J.P., Leflon-Guibout V., Marcon E., Bert F., Noussair L., Nicolas-Chanoine M.H.: Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS One, 4, e4817 (2009)PagesJ.M.LavigneJ.P.Leflon-GuiboutV.MarconE.BertF.NoussairL.Nicolas-ChanoineM.H.Efflux pump, the masked side of beta-lactam resistance in Klebsiella pneumoniae clinical isolatesPLoS One4e4817200910.1371/journal.pone.0004817265210019279676Search in Google Scholar

Perez F., Bonomo R.A. i wsp.: OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob. Agents Chemother. 57, 4602–4603 (2013)PerezF.BonomoR.A.i wsp.OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human originAntimicrob. Agents Chemother.5746024603201310.1128/AAC.00725-13375430723817374Search in Google Scholar

Perichon B., Courvalin P.: VanA-Type Vancomycin-Resistant Staphylococcus aureus Antimicrob. Agents Chemother. 53, 4580–4587 (2009)PerichonB.CourvalinP.VanA-Type Vancomycin-Resistant Staphylococcus aureus AntimicrobAgents Chemother.5345804587200910.1128/AAC.00346-09277233519506057Search in Google Scholar

Poole K.: Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria Antimicrob. Agents Chemother. 44, 2233–2241 (2000)PooleK.Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria Antimicrob.Agents Chemother.4422332241200010.1128/AAC.44.9.2233-2241.20009005110952561Search in Google Scholar

Queenan A.M., Bush K.: Carbapenemases: the Versatile B-Lactamases Clin. Microbiol. Rev. 20, 440–458 (2007)QueenanA.M.BushK.Carbapenemases: the Versatile B-LactamasesClin. Microbiol. Rev.20440458200710.1128/CMR.00001-07193275017630334Search in Google Scholar

Ramirez M.S., Tolmasky M.E.: Aminoglycoside modifying enzymes. Drug. Resist. Updat. 13, 151–171 (2010)RamirezM.S.TolmaskyM.E.Aminoglycoside modifying enzymesDrug. Resist. Updat.13151171201010.1016/j.drup.2010.08.003299259920833577Search in Google Scholar

Rodriguez-Verdugo A., Gaut B.S., Tenaillon O.: Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol. Biol. 13, 50 (2013)Rodriguez-VerdugoA.GautB.S.TenaillonO.Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stressBMC Evol. Biol.1350201310.1186/1471-2148-13-50359850023433244Search in Google Scholar

Schwendener S., Cotting K., Perreten V.: Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci. Rep. 7, 43797 (2017)SchwendenerS.CottingK.PerretenV.Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sourcesSci. Rep.743797201710.1038/srep43797534102328272476Search in Google Scholar

Sharkey L.K.R., Edwards T.A., O’Neill A.J.: ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio, 7, e01975–15 (2016)SharkeyL.K.R.EdwardsT.A.O’NeillA.J.ABC-F proteins mediate antibiotic resistance through ribosomal protectionmBio7e0197515201610.1128/mBio.01975-15Search in Google Scholar

Shen Z.Q., Wang Y., Shen Y.B., Shen J.Z., Wu C.M.: Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis. 16, 293–293 (2016)ShenZ.Q.WangY.ShenY.B.ShenJ.Z.WuC.M.Early emergence of mcr-1 in Escherichia coli from food-producing animalsLancet Infect. Dis.16293293201610.1016/S1473-3099(16)00061-XSearch in Google Scholar

Sothiselvam S., Mankin A.S. i wsp.: Macrolide antibiotics allosterically predispose the ribosome for translation arrest. PNAS USA, 111, 9804–9809 (2014)SothiselvamS.MankinA.S.i wsp.Macrolide antibiotics allosterically predispose the ribosome for translation arrestPNAS USA11198049809201410.1073/pnas.1403586111410336024961372Search in Google Scholar

Straus S.K., Hancock R.E.W.: Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides. BBA-Biomembranes, 1758, 1215–1223 (2006)StrausS.K.HancockR.E.W.Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptidesBBA-Biomembranes175812151223200610.1016/j.bbamem.2006.02.00916615993Search in Google Scholar

Sun J., Liu Y.H. i wsp.: Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat. Microbiol. 4, 1457–1464 (2019)SunJ.LiuY.H.i wsp.Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coliNat. Microbiol.414571464201910.1038/s41564-019-0496-4670786431235960Search in Google Scholar

Sun Y., Cai Y., Liu X., Bai N., Liang B., Wang R.: The emergence of clinical resistance to tigecycline. Int. J. Antimicrob. Agents, 41, 110–116 (2013)SunY.CaiY.LiuX.BaiN.LiangB.WangR.The emergence of clinical resistance to tigecyclineInt. J. Antimicrob. Agents41110116201310.1016/j.ijantimicag.2012.09.00523127485Search in Google Scholar

Takahata S., Ida T., Hiraishi T., Sakakibara S., Maebashi K., Terada S., Muratani T., Matsumoto T., Nakahama C., Tomono K.: Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int. J. Antimicrob. Agents, 35, 333–337 (2010)TakahataS.IdaT.HiraishiT.SakakibaraS.MaebashiK.TeradaS.MurataniT.MatsumotoT.NakahamaC.TomonoK.Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coliInt. J. Antimicrob. Agents35333337201010.1016/j.ijantimicag.2009.11.01120071153Search in Google Scholar

Tran T.T., Munita J.M., Arias C.A.: Mechanisms of drug resistance: daptomycin resistance. Ann. N.Y. Acad. Sci. 1354, 32–53 (2015)TranT.T.MunitaJ.M.AriasC.A.Mechanisms of drug resistance: daptomycin resistanceAnn. N.Y. Acad. Sci.13543253201510.1111/nyas.12948496653626495887Search in Google Scholar

Truong-Bolduc Q.C., Wang Y., Hooper D.C.: Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 62, e00927–18 (2018)Truong-BolducQ.C.WangY.HooperD.C.Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureusAntimicrob. Agents Chemother.62e0092718201810.1128/AAC.00927-18610580229891612Search in Google Scholar

van Hoek A.H.A.M., Mevius D., Guerra B., Mullany P., Roberts A.P., Aarts H.J.M.: Acquired antibiotic resistance genes: an overview. Front. Microbiol. 2, 203 doi: 10.3389/fmicb.2011.00203 (2011)van HoekA.H.A.M.MeviusD.GuerraB.MullanyP.RobertsA.P.AartsH.J.M.Acquired antibiotic resistance genes: an overviewFront. Microbiol.2203doi:10.3389/fmicb.2011.002032011320222322046172Open DOISearch in Google Scholar

Villa L., Feudi C., Fortini D., Garcia–Fernandez A., Carattoli A.: Genomics of KPC-Producing Klebsiella pneumoniae Sequence Type 512 Clone Highlights the Role of RamR and Ribosomal S10 Protein Mutations in Conferring Tigecycline Resistance. Antimicrob. Agents Chemother. 58, 1707–1712 (2014)VillaL.FeudiC.FortiniD.Garcia–FernandezA.CarattoliA.Genomics of KPC-Producing Klebsiella pneumoniae Sequence Type 512 Clone Highlights the Role of RamR and Ribosomal S10 Protein Mutations in Conferring Tigecycline ResistanceAntimicrob. Agents Chemother.5817071712201410.1128/AAC.01803-13395783624379204Search in Google Scholar

Volkers G., Palm G.J., Weiss M.S., Wright G.D., Hinrichs W.: Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett, 585, 1061–1066 (2011)VolkersG.PalmG.J.WeissM.S.WrightG.D.HinrichsW.Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenaseFEBS Lett58510611066201110.1016/j.febslet.2011.03.01221402075Search in Google Scholar

Wang M., Guo Q., Xu X., Wang X., Ye X., Wu S., Hooper D.C., Wang M.: New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 53, 1892–1897 (2009)WangM.GuoQ.XuX.WangX.YeX.WuS.HooperD.C.WangM.New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilisAntimicrob. Agents Chemother.5318921897200910.1128/AAC.01400-08268156219258263Search in Google Scholar

Wang X., Wang Y., Zhou Y., Li J., Yin W., Wang S., Zhang S., Shen J., Shen Z., Wang Y.: Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 7, 122 (2018)WangX.WangY.ZhouY.LiJ.YinW.WangS.ZhangS.ShenJ.ShenZ.WangY.Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniaeEmerg. Microbes Infect.7122201810.1038/s41426-018-0124-z603010729970891Search in Google Scholar

Wang Y., Li X., Wang Y., Schwarz S., Shen J., Xia X.: Intracellular accumulation of linezolid and florfenicol in optrA-producing Enterococcus faecalis and Staphylococcus aureus. Molecules, 23, e3195 (2018)WangY.LiX.WangY.SchwarzS.ShenJ.XiaX.Intracellular accumulation of linezolid and florfenicol in optrA-producing Enterococcus faecalis and Staphylococcus aureusMolecules23e3195201810.3390/molecules23123195632077030518106Search in Google Scholar

Wang Y., Shen J. i wsp.: A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 70, 2182–2190 (2015)WangY.ShenJ.i wsp.A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal originJ. Antimicrob. Chemother.7021822190201510.1093/jac/dkv11625977397Search in Google Scholar

Wasyl D., Hoszowski A., Zajac M.: Prevalence and characterisation of quinolone resistance mechanisms in Salmonella spp. Vet Microbiol, 171, 307–314 (2014)WasylD.HoszowskiA.ZajacM.Prevalence and characterisation of quinolone resistance mechanisms in Salmonella sppVet Microbiol171307314201410.1016/j.vetmic.2014.01.04024613291Search in Google Scholar

Wilson D.N., Schluenzen F., Harms J.M., Starosta A.L., Connell S.R., Fucini P.: The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. PNAS USA, 105, 13339–13344 (2008)WilsonD.N.SchluenzenF.HarmsJ.M.StarostaA.L.ConnellS.R.FuciniP.The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioningPNAS USA1051333913344200810.1073/pnas.0804276105253319118757750Search in Google Scholar

Wolter N., Smith A.M., Farrell D.J., Northwood J.B., Douthwaite S., Klugman K.P.: Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases rRNA methylation. Antimicrob. Agents Chemother. 52, 435–440 (2008)WolterN.SmithA.M.FarrellD.J.NorthwoodJ.B.DouthwaiteS.KlugmanK.P.Telithromycin resistance in Streptococcus pneumoniae is conferred by a deletion in the leader sequence of erm(B) that increases rRNA methylationAntimicrob. Agents Chemother.52435440200810.1128/AAC.01074-07222476018056269Search in Google Scholar

Wong M.H., Chen S.: First detection of oqxAB in Salmonella spp. isolated from food. Antimicrob. Agents Chemother. 57, 658–660 (2013)WongM.H.ChenS.First detection of oqxAB in Salmonella spp. isolated from foodAntimicrob. Agents Chemother.57658660201310.1128/AAC.01144-12353596223147728Search in Google Scholar

World Health Organization.: Critically important antimicrobials for human medicine, 6th revision 2018. 1–45 (2019)World Health OrganizationCritically important antimicrobials for human medicine, 6th revision20181452019Search in Google Scholar

Xavier B., Lammens C., Ruhal R., Kumar-Singh S., Butaye P., Goossens H., Malhotra-Kumar S.: Identification of a novel plasmid-mediated colistinresistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 21, e30280 (2016)XavierB.LammensC.RuhalR.Kumar-SinghS.ButayeP.GoossensH.Malhotra-KumarS.Identification of a novel plasmid-mediated colistinresistance gene, mcr-2, in Escherichia coli, Belgium, June 2016Euro Surveill.21e30280201610.2807/1560-7917.ES.2016.21.27.3028027416987Search in Google Scholar

Xia R., Guo X., Zhang Y., Xu H.: qnrVC-like gene located in a novel complex class 1 integron harboring the ISCR1 element in an Aeromonas punctata strain from an aquatic environment in Shandong Province, China. Antimicrob. Agents Chemother. 54, 3471–3474 (2010)XiaR.GuoX.ZhangY.XuH.qnrVC-like gene located in a novel complex class 1 integron harboring the ISCR1 element in an Aeromonas punctata strain from an aquatic environment in Shandong Province, ChinaAntimicrob. Agents Chemother.5434713474201010.1128/AAC.01668-09291633120516288Search in Google Scholar

Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., Shibayama K., Konda T., Arakawa Y.: New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360 (2007)YamaneK.WachinoJ.SuzukiS.KimuraK.ShibataN.KatoH.ShibayamaK.KondaT.ArakawaY.New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolateAntimicrob. Agents Chemother.5133543360200710.1128/AAC.00339-07204324117548499Search in Google Scholar

Yang Y.Q., Li Y.X., Lei C.W., Zhang A.Y., Wang H.N.: Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob. Chemother. 73, 1791–1795 (2018)YangY.Q.LiY.X.LeiC.W.ZhangA.Y.WangH.N.Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniaeJ Antimicrob. Chemother.7317911795201810.1093/jac/dky11129912417Search in Google Scholar

Yin W., Zhang R., Li H., Shen Y., Walsh T.R., Liu Z., Shen J., Wang S., WangmBio Y., 8:e00543–17: Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio, 8, e00543–00517 (2017)YinW.ZhangR.LiH.ShenY.WalshT.R.LiuZ.ShenJ.WangS.WangmBioY.8:e00543–17Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia colimBio8e0054300517201710.1128/mBio.00543-17548772928655818Search in Google Scholar

Yu Z., Qin W., Lin J., Fang S., Qiu J.: Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res. Int. 2015, 679109 (2015)YuZ.QinW.LinJ.FangS.QiuJ.Antibacterial mechanisms of polymyxin and bacterial resistanceBiomed Res. Int.2015679109201510.1155/2015/679109431257125664322Search in Google Scholar

Zhanel G.G., Karlowsky J.A., Rubinstein E., Hoban D.J.: Tigecycline: a novel glycylcycline antibiotic. Expert Rev. Anti. Infect. Ther. 4, 9–25 (2006)ZhanelG.G.KarlowskyJ.A.RubinsteinE.HobanD.J.Tigecycline: a novel glycylcycline antibioticExpert Rev. Anti. Infect. Ther.4925200610.1586/14787210.4.1.916441206Search in Google Scholar

Zhang T.H., Muraih J.K., Tishbi N., Herskowitz J., Victor R.L., Silverman J., Uwumarenogie S., Taylor S.D., Palmer M., Mintzer E.: Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. J. Biol. Chem. 289, 11584–11591 (2014)ZhangT.H.MuraihJ.K.TishbiN.HerskowitzJ.VictorR.L.SilvermanJ.UwumarenogieS.TaylorS.D.PalmerM.MintzerE.Cardiolipin Prevents Membrane Translocation and Permeabilization by DaptomycinJ. Biol. Chem.2891158411591201410.1074/jbc.M114.554444400206924616102Search in Google Scholar

eISSN:
2545-3149
Idiomas:
Inglés, Polonais
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology