Cite

[1] Brian, B. S. and Bryan, A. M. (2014). A finite element–based approach for predictions of rigid pile group stiffness efficiency in clays. Acta Geotechnica, 9, 469–484. doi: https://doi.org/10.1007/s11440-013-0240-910.1007/s11440-013-0240-9 Search in Google Scholar

[2] McCabe, B. A. and Lehane, B. M. (2006). Behavior of axially loaded pile groups driven in clayey silt. J. Geotech. Geoenviron. Eng. 132(3), 401–410. doi: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:3(401)10.1061/(ASCE)1090-0241(2006)132:3(401) Search in Google Scholar

[3] Comodromos, E.M. and Bareka, S. V. (2009). Response evaluation of axially loaded fixed-head pile groups in clayey soils. Int. J. Numer. Anal. Methods Geomech. 33(17), 1839–1865. doi: https://doi.org/10.1002/nag.78710.1002/nag.787 Search in Google Scholar

[4] Majid, H. Buse, E. Hanifi, C.and Abdulazim, Y. (2020). 3D Numerical Modeling of a Single Pipe Pile Under Axial Compression Embedded in Organic Soil. Geotech Geol Eng. 38,4423–4434.doi: https://doi.org/10.1007/s10706-020-01299-110.1007/s10706-020-01299-1 Search in Google Scholar

[5] Butterfield, R.and Banerjee, P. (1971). The elastic analysis of compressible piles and pile groups. Géotechnique. 21(1), 43–60. doi: https://doi.org/10.1680/geot.1971.21.1.4310.1680/geot.1971.21.1.43 Search in Google Scholar

[6] Jeramy, C. Ashlock, A. M. ASCE; and Zhiyan Jiang. (2017). Three-dimensional soil-pile group interaction in layered soil with disturbed zone by Boundary Element Analysis, Geotechnical Frontiers. GSP 279, 334-344. doi: https://doi.org/10.1061/9780784480465.03510.1061/9780784480465.035 Search in Google Scholar

[7] Basile, F. (1999). Non-linear analysis of pile groups. Proc. Inst. Civ. Eng. Geotech. Eng. 137(2), 105–15. doi: https://doi.org/10.1680/gt.1999.37020510.1680/gt.1999.370205 Search in Google Scholar

[8] Poulos, H.G and Davis, E. H. (1980). Pile foundation analysis and design. New York, John Wiley. Search in Google Scholar

[9] Randolph, M. F and Wroth, C. (1979). An analysis of the vertical deformation of pile groups. Géotechnique. 29(4), 423–39. doi: https://doi.org/10.1680/geot.1979.29.4.42310.1680/geot.1979.29.4.423 Search in Google Scholar

[10] Chen, S. L, Song, C. Y and Chen, L. Z. (2011). Two-pile interaction factor revisited. Can. Geotech. J. 48(5), 754–766. doi: https://doi.org/10.1139/t10-09510.1139/t10-095 Search in Google Scholar

[11] Poulos, H. G. (1968). Analysis of the settlement of pile groups. Geotechnique, 18(4), 49−471. doi: https://doi.org/10.1680/geot.1968.18.4.44910.1680/geot.1968.18.4.449 Search in Google Scholar

[12] Poulos. H. G. (1989). Pile behaviour-theory and application. Geotechnique. 39(3), 365-415. doi: https://doi.org/10.1680/geot.1989.39.3.36510.1680/geot.1989.39.3.365 Search in Google Scholar

[13] Lee, C. Y. (1993). Pile group settlement analysis by hybrid layer approach. Journal of the Geotechnical Engineering, ASCE.119(6), 984−997. doi: https://doi.org/10.1061/(ASCE)0733-9410(1993)119:6(984)10.1061/(ASCE)0733-9410(1993)119:6(984) Search in Google Scholar

[14] Costanzo, D and Lancellota, R. (1998). A note on pile interaction factors. Soils and Foundation. 38(4), 251−253. doi: https://doi.org/10.3208/sandf.38.4_25110.3208/sandf.38.4_251 Search in Google Scholar

[15] Wong, S.C and Poulos, H.G.(2005). Approximate pile-to-pile interaction factors between two dissimilar piles. Computers and Geotechnics, 32(8), 613−618. doi: https://doi.org/10.1016/j.compgeo.2005.11.00110.1016/j.compgeo.2005.11.001 Search in Google Scholar

[16] Poulos, H.G and Mattes, N. S. (1971). Settlement and load distribution of pile groups. Aust. Geomech. J. G1(1), 18-28. Search in Google Scholar

[17] Lee, C. Y. (1993). Settlement of pile group-practical approach. J.Geotech. Eng. 119(9), 1449-1461. doi: https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1449)10.1061/(ASCE)0733-9410(1993)119:9(1449) Search in Google Scholar

[18] Qian-qing, Z, Shi-min, Z, Fa-yun, L, Qian Z and Fei, X. (2015). Some observations of the influence factors on the response of pile groups, KSCE Journal of Civil Engineering. 19(6), 1667-1674. doi: https://doi.org/10.1007/s12205-014-1550-710.1007/s12205-014-1550-7 Search in Google Scholar

[19] Sheil, B.B, McCabe, B.A, Comodromos, E. M, Lehane, B. M. (2019). Pile groups under axial loading: an appraisal of simplified nonlinear prediction models, Geotechnique. Vol.69, No. 7, 565-579. doi: https://doi.org/10.1680/jgeot.17.R.04010.1680/jgeot.17.R.040 Search in Google Scholar

[20] Mahmoud, G, Pedram, R and Arash, A. L. (2014). Analytical and numerical solution for interaction between batter pile group. KSCE Journal of Civil Engineering.18(7), 2051-2063. doi: https://doi.org/10.1007/s12205-014-0082-510.1007/s12205-014-0082-5 Search in Google Scholar

[21] Rotta, Loria, A. F and Laloui, L. (2017). The equivalent pier method for energy pile groups. Géotechnique. 67 (8), 691–702. doi: https://doi.org/10.1680/jgeot.16.P.13910.1680/jgeot.16.P.139 Search in Google Scholar

[22] Balakumar, V. Huangand, Min.and Erwin, Oh .(2013).Equivalent pier theory for piled raft design. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris. Search in Google Scholar

[23] Celik, F. (2019). An Analytical Approach for Piled-Raft Foundation Design Based on Equivalent Pier and Raft Analyses by Using 2D Finite Element Method. Arabian Journal of Geosciences. 12(429):1-16 doi: https://doi.org/10.1007/s12517-019-4579-610.1007/s12517-019-4579-6 Search in Google Scholar

[24] Sinha, A. Hanna, AM. (2019). 3D numerical model for piled raft foundation. Int J Geomech. 17:1–9. doi: https://doi.org/10.1061/(ASCE)GM.1943-5622.000106610.1061/(ASCE)GM.1943-5622.0001066 Search in Google Scholar

[25] Deb P, Pal SK. (2019). Numerical analysis of piled raft foundation under combined vertical and lateral loading. Ocean Eng; 190:106431. doi: https://doi.org/10.1016/j.oceaneng.2019.10643110.1016/j.oceaneng.2019.106431 Search in Google Scholar

[26] Mali, S. and Singh, B. (2018). Behavior of large piled-raft foundation on clay soil. Ocean Eng. 149:205–216. doi: https://doi.org/10.1016/j.oceaneng.2017.12.02910.1016/j.oceaneng.2017.12.029 Search in Google Scholar

[27] Deb, P., Pal, S.K. Analysis of Load Sharing Response and Prediction of Interaction Behaviour in Piled Raft Foundation. Arab J Sci Eng 44: 8527–8543 doi: https://doi.org/10.1007/s13369-019-03936-110.1007/s13369-019-03936-1 Search in Google Scholar

[28] Abdolrezayi, A. Khayat, N.(2021). Comparative Three-Dimensional Finite Element Analysis of Piled Raft Foundations. Computational Engineering and Physical Modeling 4(1): 19-36. doi: https://dx.doi.org/10.22115/cepm.2020.234834.1111 Search in Google Scholar

[29] Vesic, A. S. (1969). Experiments with instrumented pile groups in sand. Performance of deep Foundations. ASTM STP 444, 177-222. doi: https://doi.org/10.1520/STP47286S10.1520/STP47286S Search in Google Scholar

[30] Poulos, H.G. (1979). Settlement of single piles in non-homogeneous soil. J. Geotech. Eng. Div. ASCE. 105(5), 627-641. doi: https://doi.org/10.1061/AJGEB6.000079910.1061/AJGEB6.0000799 Search in Google Scholar

[31] Lee, C. Y. (1991). Discrete layer analysis of axially loaded piles and pile groups. Computers Geotech.11(4), 295-313. doi: https://doi.org/10.1016/0266-352X(91)90014-710.1016/0266-352X(91)90014-7 Search in Google Scholar

[32] Lee, K.M and Xiao, Z.R. (2001). A simplified nonlinear approach for pile group settlement analysis in multilayered soils. Canadian Geotechnical Journal. 38(5), 1063−1080. doi: https://doi.org/10.1139/t01-03410.1139/t01-034 Search in Google Scholar

[33] Hoyoung, S and Monica, P. (2006). Analytical solutions for a vertically loaded pile in multilayered soil. Geomechanics and Geoengineering: An International Journal. 00(00), 1-10. doi: https://doi.org/10.1080/1748602060109938010.1080/17486020601099380 Search in Google Scholar

[34] Guo, W.D and Randolph, M. F.(1997). Vertically loaded piles in non-homogeneous media. Int. J. Numer. Anal. Meth. Geomechs. 21, 507-532. doi:https://doi.org/10.1002/(SICI)1096-9853(199708)21:8%3C507::AID-NAG888%3E3.0.CO;2-V Search in Google Scholar

[35] Jardine, R. J, Potts, D. M, Fourie, A. B and Burland, J. B. (1986). Studies of the influence of nonlinear stress-S1rain characteristics in soil-structure interaction. Geotechnique. 36(3), 377-396. doi: https://doi.org/10.1680/geot.1986.36.3.37710.1680/geot.1986.36.3.377 Search in Google Scholar

[36] Poulos, H.G.(1993). Settlement prediction for bored pile groups. In Proceedings of deep foundations on bored and auger piles. (ed.W. F. Van Impe). 103–117. Search in Google Scholar

[37] Randolph, M. and Clancy, P. (1993). Efficient design of piled rafts. In Deep foundations on bored and auger piles – bap II (ed. W. F.Van Impe).119–130. Search in Google Scholar

eISSN:
1338-7278
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other