Acceso abierto

Investigation of the use of various materials for the construction of an enthalpy exchanger


Cite

[1] Directive of the European Parliament. (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Available online: http://data.europa.eu/eli/dir/2018/844/oj (acces 10. october 2020).Search in Google Scholar

[2] Airaksinen, M. (2011). Energy Use in Day Care Centers and Schools. Energies 2011, 4, 998-1009.10.3390/en4070998Search in Google Scholar

[3] Steen Englund, J.; Cehlin, M.; Akander, J.; Moshfegh, B. (2020). Measured and Simulated Energy Use in a Secondary School Building in Sweden—A Case Study of Validation, Airing, and Occupancy Behaviour. Energies 2020, 13, 2325.10.3390/en13092325Search in Google Scholar

[4] Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M.; Imran. (2020). Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms. Energies 2020, 13, 4363.10.3390/en13174363Search in Google Scholar

[5] Ruiz, G.R.; Bandera, C.F. (2017). Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587.10.3390/en10101587Search in Google Scholar

[6] Wang, W.; Shan, X.; Hussain, S.A.; Wang, C.; Ji, Y. (2020). Comparison of Multi-Control Strategies for the Control of Indoor Air Temperature and CO2 with OpenModelica Modeling. Energies 2020, 13, 4425.10.3390/en13174425Search in Google Scholar

[7] Bahramnia, P.; Hosseini Rostami, S.M.; Wang, J.; Kim, G.-J. (2019). Modeling and Controlling of Temperature and Humidity in Building Heating, Ventilating, and Air Conditioning System Using Model Predictive Control. Energies 2019, 12, 4805.10.3390/en12244805Search in Google Scholar

[8] Dall’O’, G.; Belli, V.; Brolis, M.; Mozzi, I.; Fasano, M. (2013). Nearly Zero-Energy Buildings of the Lombardy Region (Italy), a Case Study of High-Energy Performance Buildings. Energies 2013, 6, 3506-3527.10.3390/en6073506Search in Google Scholar

[9] Cho, K.; Cho, D.; Kim, T. (2020). Effect of Bypass Control and Room Control Modes on Fan Energy Savings in a Heat Recovery Ventilation System. Energies 2020, 13, 1815.10.3390/en13071815Search in Google Scholar

[10] Bendic, V.; Dobrotă, D. (2018). Theoretical and Experimental Contributions on the Use of Smart Composite Materials in the Construction of Civil Buildings with Low Energy Consumption. Energies 2018, 11, 2310.10.3390/en11092310Search in Google Scholar

[11] The European parliament (2019) COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE OF THE REGIONS: The European Green Deal. COM/2019/640.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FINSearch in Google Scholar

[12] Available online: https://ourworldindata.org/co2/country/bhutan?country=~BTN.Search in Google Scholar

[13] European Commission′s. (2014). European Commission′s regulation No. 1253/2014 from 7 July 2014, implementing the directive 2009/125/ES of the European Parliament and of the Council [3] concerning the eco-design of ventilation units. Available online: https://eurlex.europa.eu/legal-content/GA/TXT/?uri=CELEX%3A32014R1253Search in Google Scholar

[14] Ding, Z.; Liu, R.; Li, Z.; Fan, C. A (2020). Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management. Energies 2020, 13, 4621.10.3390/en13184621Search in Google Scholar

[15] Rosato, A.; Guarino, F.; Filomena, V.; Sibilio, S.; Maffei, L. (2020). Experimental Calibration and Validation of a Simulation Model for Fault Detection of HVAC Systems and Application to a Case Study. Energies 2020, 13, 3948.10.3390/en13153948Search in Google Scholar

[16] Dong, J.; Winstead, C.; Nutaro, J.; Kuruganti, T. (2018). Occupancy-Based HVAC Control with Short-Term Occupancy Prediction Algorithms for Energy-Efficient Buildings. Energies 2018, 11, 2427.10.3390/en11092427Search in Google Scholar

[17] Kim, N.-K.; Shim, M.-H.; Won, D. (2018). Building Energy Management Strategy Using an HVAC System and Energy Storage System. Energies 2018, 11, 2690.10.3390/en11102690Search in Google Scholar

[18] Kassai, M.; Al-Hyari, L. (2019). Investigation of Ventilation Energy Recovery with Polymer Membrane Material-Based Counter-Flow Energy Exchanger for Nearly Zero-Energy Buildings. Energies 2019, 12, 1727.10.3390/en12091727Search in Google Scholar

[19] Zhang, L.; Zhang, Y.F. (2016). Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory. Energies 2016, 9, 24.10.3390/en9010024Search in Google Scholar

[20] Zhang, L.; Zhang, Y.-F. (2014). Research on Energy Saving Potential for Dedicated Ventilation Systems Based on Heat Recovery Technology. Energies 2014, 7, 4261-4280.10.3390/en7074261Search in Google Scholar

[21] De Antonellis, S.; Intini, M.; Joppolo, C.M.; Leone, C. (2014). Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems. Energies 2014, 7, 7348-7367.10.3390/en7117348Search in Google Scholar

[22] Al-Hyari, L .; Kassai, M. (2020). Development and Experimental Validation of TRNSYS Simulation Model for Heat Wheel Operated in Air Handling Unit. Energie 2020, 13, 4957.10.3390/en13184957Search in Google Scholar

[23] Fanger, P.O. (1970). Thermal comfort. Analysis and applications in environmental engineering. In Thermal Comfort. Analysis and Applications in Environmental Engineering. Danish Technical Press: Copenhagen, Denmark.Search in Google Scholar

[24] Gładyszewska-Fiedoruk, K.; Zhelykh, V.; Pushchinskyi, A. (2019). Simulation and Analysis of Various Ventilation Systems Given in an Example in the Same School of Indoor Air Quality. Energies 2019, 12, 2845.10.3390/en12152845Search in Google Scholar

[25] Mjörnell, K.; Johansson, D.; Bagge, H. (2019). The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in Apartments. Energies 2019, 12, 4454.10.3390/en12234454Search in Google Scholar

[26] Chyský, J., and K. Hemzal. (1993). Větrání a klimatizace.Bolit.Search in Google Scholar

[27] Székyová, Marta, Karol Ferstl, and Richard Nový. (2004). Vetranie a klimatizácia. Jaga group.Search in Google Scholar

[28] Vyhláška Ministerstva zdravotníctva Slovenskej republiky č. 259/2008 Z. z. o podrobnostiach o požiadavkách na vnútorné prostredie budov a o minimálnych požiadavkách na byty nižšieho štandardu a na ubytovacie zariadenia. (č. 210/2016 Z. z., 124/2017 Z. z.). Official publication: Zbierka zákonov SR; Number: 105; Publication date: 17/07/2008Search in Google Scholar

[29] Recknagel, Sprenger, Schramek. (1997). Taschenbuch für Heizung+ Klimatechnik. 67. vydanie.Search in Google Scholar

[30] ASTME96. (2000). American Standard Test Methods for Water Vapor Transmission of Materials, American Society for Testing and Materials, pp. 842-849.Search in Google Scholar

[31] Nasif, Mohammad Shakir, Graham L. Morrison, and Masud Behnia. (2005). Heat and mass transfer in air to air enthalpy heat exchangers.” Proceedings of the 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics. Matsushima, Japan.Search in Google Scholar

[32] Yunus A. Çengel, Afshin J. Ghajar. (2011). Heat and mass transfer fundamentals and applications. McGraw-700 Hill Education 701. 52.Search in Google Scholar

[33] Koester S.M., (2016). Membrane-based Enthalpy Exchagers, Von der Fakult¨at fur Maschinenwesen ¨ der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissen schaften genehmigte Dissertation.Search in Google Scholar

eISSN:
1338-7278
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other