Cite

1. Najafpour, G., Hashemiyeh, B., Asadi, M. & Ghasemi, M. (2008). Biological treatment of dairy wastewater in an upflow anaerobic sludge-fixed film bioreactor. Am. Eurasian J. Agric. Environ. Sci. 4(2), 251–257.Search in Google Scholar

2. Wee, Y., Kim, J. & Ryu, H. (2006). Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44(2), 163.Search in Google Scholar

3. Tango, M. & Ghaly, A. (2002). A continuous lactic acid production system using an immobilized packed bed of Lacto-bacillus helveticus. Appl. Microbiol. Biotechnol. 58(6), 712–720, DOI: 10.1007/s00253-002-0970-3.10.1007/s00253-002-0970-3Search in Google Scholar

4. Vodnar, D.C., Venus, J., Schneider, R. & Socaciu, C. (2010). Lactic acid production by Lactobacillus paracasei 168 in discontinuous fermentation using lucerne green juice as nutrient substitute. Chem. Eng. Technol. 33(3), 468–474. DOI: 10.1002/ceat.200900463.10.1002/ceat.200900463Search in Google Scholar

5. John, R.P., Nampoothiri, K.M. & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 74(3), 524–534. DOI:10.1007/s00253-006-0779-6.10.1007/s00253-006-0779-6Search in Google Scholar

6. Abdel-Rahman, M.A., Tashiro, Y. & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31(6), 877-902. DOI: 10.1016/j.biotechadv.2013.04.0027.Search in Google Scholar

7. Panesar P.S., Kennedy J.F., Gandhi D.N. & Bunko K. (2007). Bioutilisation of whey for lactic acid production. Food Chem. 105(1), 1–14. DOI: 10.1016/j.foodchem.2007.03.035.10.1016/j.foodchem.2007.03.035Search in Google Scholar

8. Fakhravar, S., Najafpour, G., Heris, S.Z., Izadi, M. & Fakhravar, A. (2012). Fermentative Lactic Acid from Deproteinized Whey Using Lactobacillus bulgaricus in Batch Culture. World Appl. Sci. J. 17(9), 1083–1086.Search in Google Scholar

9. Hofvendahl, K. & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26(2), 87–107. DOI: 10.1016/S0141-0229(99)00155-6.10.1016/S0141-0229(99)00155-6Search in Google Scholar

10. Guo, Y., Yan, Q., Jiang, Z., Teng, C. & Wang, X. (2010). Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J. Ind. Microbiol. Biotechnol. 37(11), 1137–1143. DOI: 10.1007/s10295-010-0761-2.10.1007/s10295-010-0761-220556475Search in Google Scholar

11. Pagana, I., Morawicki, R. & Hager, T.J. (2014). Lactic acid production using waste generated from sweet potato processing. Int. J. Food Sci. Tech. 49(2), 641–649. DOI: 10.1111/ijfs.12347.10.1111/ijfs.12347Search in Google Scholar

12. Saito, K., Hasa, Y. & Abe, H. (2012). Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J. Biosci. Bioeng. 114(2), 166–169. DOI: 10.1016/j.jbiosc.2012.03.007.10.1016/j.jbiosc.2012.03.00722578599Search in Google Scholar

13. Tay, A. & Yang, S.T. (2002). Production of L (+) lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 80(1), 1–12. DOI: 10.1002/bit.10340.10.1002/bit.1034012209781Search in Google Scholar

14. Yen, H., W. & Kang, J.L. (2010). Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus. Bioprocess Biosystems Eng. 33(9), 1017–1023. DOI: 10.1007/s00449-010-0426-6.10.1007/s00449-010-0426-620373112Search in Google Scholar

15. Fu, W. & Mathews, A.P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 3(3), 163–170. DOI: 10.1016/S1369-703X(99)00014-5.10.1016/S1369-703X(99)00014-5Search in Google Scholar

16. Khiralla, G., Rasmy, N., El-Malky, W. & Ibrahim, M. (2009). The role of fermented soymilk with potential probiotic properties in the treatment of diarrhea in young rats. Pak. J. Biotech. 6(1/2), 89–100.Search in Google Scholar

17. Korbekandi, H., Abedi, D., Jalali, M., Fazeli, M.R. & Heidari, M. (2007). Optimization of Lactobacillus casei growth and lactic acid production in batch culture. J. Biotechnol. 131(2 Suppl.), 182–183. DOI: 10.1016/j.jbiotec.2007.07.923.10.1016/j.jbiotec.2007.07.923Search in Google Scholar

18. Kim, D.H., Lim, W.T., Lee, M.K. & Kim, M.S. (2012). Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA-producing UASB reactor. Bioresour. Technol. 119, 355–361. DOI: 10.1016/j.biortech.2012.05.027.10.1016/j.biortech.2012.05.027Search in Google Scholar

19. Tango, M. & Ghaly, A. (1999). Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions. Biomass Bioenergy. 16(1), 61–78. DOI: 10.1016/S0961-9534(98)00062-2.10.1016/S0961-9534(98)00062-2Search in Google Scholar

20. Najafpour, G. (2006). Biochemical engineering and biotechnology. Elsevier.Search in Google Scholar

21. Liu, B., Yang, M., Qi, B., Chen, X., Su, Z. & Wan, Y. (2010). Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochem. Eng. J. 52(2–3), 212–219. DOI: 10.1016/j.bej.2010.08.013.10.1016/j.bej.2010.08.013Search in Google Scholar

22. Hujanen, M. & Linko, Y.Y. (1996). Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45(3), 307–313. DOI: 10.1007/s00253005068823.Search in Google Scholar

23. Clark, D.S. & Blanch, H.W. (1997). Biochemical engineering. New York: CRC Press.10.1201/9780429258732Search in Google Scholar

24. Taylor, J. (2001). Microorganisms and Biotechnology. United Kingdom: Nelson Thornes.Search in Google Scholar

25. Hofvendahl, K. & Hagerdal, B.H. (1997). L. Lactic Acid Production from Whole Wheat Flour Hydrolysate Using Strain of Lactobacilli and Lactococci. Enzyme Microbiol. Technol. 20(3), 303–307. DOI: 10.1016/S0141-0229(99)00155-6.10.1016/S0141-0229(99)00155-6Search in Google Scholar

26. Audet, P., Paquin, C. & Lacroix, C. (1989). Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a whey permeate medium. Appl. Environ. Microbiol. 55(1), 185–189.Search in Google Scholar

27. Samuel, W.A., Lee, Y. & Anthony, W. (1980). Lactic acid fermentation of crude sorghum extract. Biotechnol. Bioeng. 22(4), 757–777. DOI: 10.1002/bit.260220404.10.1002/bit.260220404Search in Google Scholar

28. Mozzi, F., Oliver, G., de Giori, G.S. & de Valdez, G.F. (1995). Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50(2), 80–82.Search in Google Scholar

29. Büyükkileci, A.O. & Harsa, S. (2004). Batch production of L (+) lactic acid from whey by Lactobacillus casei (NRRL B–441). J. Chem. Technol. Biotechnol. 79(9), 1036–1040. DOI: 10.1002/jctb.1094.10.1002/jctb.1094Search in Google Scholar

30. Chiarini, L., Mara, L. & Tabacchioni, S. (1992). Influence of growth supplements on lactic acid production in whey ultrafiltrate by Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 36(4), 461–464.10.1007/BF00170183Search in Google Scholar

eISSN:
1899-4741
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering