Acceso abierto

Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets


1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. & Kamigaito, O. (1993). One-pot synthesis of nylon 6–clay hybrid. J. Polym. Sci. Pol. Chem. 31(7), 1755–1758. DOI: 10.1002/pola.1993.080310714.10.1002/pola.1993.080310714Search in Google Scholar

2. Kawasumi, M. (2004). The discovery of polymer-clay hybrids. J. Polym. Sci. Pol. Chem. 42(7), 820–824. DOI: 10.1002/pola.10961.10.1002/pola.10961Search in Google Scholar

3. De Paiva, L.B., Morales, A.R. & Valenzuela Díaz, F.R. (2008). Organoclays: Properties, preparation and applications. Appl. Clay. Sci. 42(1–2), 8–24. DOI: 10.1016/j.clay.2008. in Google Scholar

4. Lee, A. & Lichtenhan, J.D. (1999). Thermal and viscoelastic property of epoxy–clay and hybrid inorganic–organic epoxy nanocomposites. J. Polym. Sci. Polym. Chem. Ed. 37(10), 1993–2001. DOI: 10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-Q.10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-QSearch in Google Scholar

5. Suh, D.J., Lim, Y.T. & Park, O.O. (2000). The property and formation mechanism of unsaturated polyester–layered silicate nanocomposite depending on the fabrication methods. Polymer 41, 8557–8563. DOI: 10.1016/S0032-3861(00)00216-0.10.1016/S0032-3861(00)00216-0Search in Google Scholar

6. Agag, T., Koga, T. & Takeichi, T. (2001). Studies on thermal and mechanical properties of polyimide±clay nanocomposites. Polymer 42, 3399–3408. DOI: 10.1016/S0032-3861(00)00824-7.10.1016/S0032-3861(00)00824-7Search in Google Scholar

7. Chen, G., Liu, S., Chen, S. & Qi, Z. (2001). FTIR spectra, thermal properties, and dispersibility of a polystyrene/montmorillonite nanocomposite. Macromol. Chem. Phys. 202(7), 1189–1193. DOI: 10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-M.10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-MSearch in Google Scholar

8. Lee, J.W., Lim, Y.T. & Park, O.O. (2000). Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym. Bull. 45(2), 191–198. DOI: 10.1007/s002890070048.10.1007/s002890070048Search in Google Scholar

9. Ou, C.F., Ho, M.T. & Lin, J.R. (2004). Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with rganoclay. J. Appl. Polymer Sci. 91(1), 140–145. DOI: 10.1002/app.13158.10.1002/app.13158Search in Google Scholar

10. Kim, H., Abdala, A.A. & Macosko, C.W. (2010). Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530. DOI: 10.1021/ma100572e.10.1021/ma100572eSearch in Google Scholar

11. Slonczewski, J.C. & Weiss, P.R. (1958). Band structure of graphite. Phys. Rev. 109(2), 272. DOI: 10.1103/PhysRev. in Google Scholar

12. Bunch, J.S., Verbridge, S.S., Alden, J.S., Van der Zande, A.M., Parpia, J.M., Craighead, H.G. & McEuen, P.L. (2008). Impermeable atomic membranes from graphene sheets. NanoLett. 8(8), 2458–2462. DOI: 10.1021/nl801457b.10.1021/nl801457b18630972Search in Google Scholar

13. Du, X., Skachko, I., Barker, A. & Andrei, E.Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnol. 3(8), 491–495. DOI: 10.1038/nnano.2008.199.10.1038/nnano.2008.19918685637Search in Google Scholar

14. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. (2008). Superior thermal conductivity of single-layer graphene. NanoLett. 8(3), 902–907. DOI: 10.1021/nl0731872.10.1021/nl073187218284217Search in Google Scholar

15. Lee, C., Wei, X., Kysar, J.W. & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388. DOI: 10.1126/science.1157996.10.1126/science.115799618635798Search in Google Scholar

16. Jinhong, Y., Huang, X., Wu, C. & Jiang, P. (2011). Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE T. Dielect. El. In. 18(2), 478–484. DOI: 10.1109/TDEI.2011.5739452.10.1109/TDEI.2011.5739452Search in Google Scholar

17. Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F. & Xue, Q. (2012). Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Europ. Polym. J. 48(6), 1026–1033. DOI: 10.1016/j.eurpolymj.2012. in Google Scholar

18. Beckert, F., Friedrich, C., Thomann, R. & Mülhaupt, R. (2012). Sulfur-functionalized graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer Brushes and polystyrene nanocomposites. Macromolecules 45(17), 7783–7090. DOI: 10.1021/ma301379z.10.1021/ma301379zSearch in Google Scholar

19. Potts, J.R., Lee, S.H., Alam, T.M., An, J., Stoller, M.D., Piner, R.D. & Ruoff, R.S. (2011). Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon 49(8), 2615–2623. DOI: 10.1016/j.carbon.2011. in Google Scholar

20. Zhang, F., Peng, X., Yan, W., Peng, Z. & Shen, Y. (2011). Non-isothermal crystallization kinetics of in situ Nylon 6/graphene composites by differential scanning calorimetry. J. Polym. Sci. Phys. 49(19), 1381–1388. DOI: 10.1002/polb.22321.10.1002/polb.22321Search in Google Scholar

21. Wang, X., Hu, J., Song, L., Yang, H., Xing, W. & Lu, H. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21(12), 4222–4227. DOI: 10.1039/C0JM03710A.10.1039/c0jm03710aSearch in Google Scholar

22. Fabbri, P., Bassoli, E., Bon, S.B. & Valentini, L. (2012). Preparation and characterization of poly (butylene terephthalate)/graphene composites by in situ polymerization of cyclic butylene terephthalate. Polymer 53(4), 897–902. DOI: 10.1016/j.polymer.2012. in Google Scholar

23. Istrate, O.M., Paton, K.R., Khan, U., O’Neill, A., Bell, A.P. & Coleman, J.N. (2014). Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78, 243–249. DOI: 10.1016/j.carbon.2014. in Google Scholar

24. Paszkiewicz, S. Roslaniec, Z., Szymczyk, A., Spitalsky, Z. & Mosnacek, J. (2012). Morphology and thermal properties of expanded graphite (EG)/poly(ethylene terephthalate) (PET) nanocomposites. Chemik 66(1), 26–30.Search in Google Scholar

25. Paszkiewicz, S. Nachman, M., Szymczyk, A., Spitalsky, Z., Mosnacek, J. & Roslaniec, Z. (2014). Influence of expanded graphite (EG) and graphene oxide (GO) on physical properties of PET based nanocomposites. Pol. J. Chem. Technol. 16(4), 45–50. DOI: 10.2478/pjct-2014-0068.10.2478/pjct-2014-0068Search in Google Scholar

26. Tantis, I., Psarras, G.C. & Tasis, D. (2012). Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. eXPRESS Polym. Lett. 6(4), 283–292. DOI: 10.3144/expresspolymlett.2012.31.10.3144/expresspolymlett.2012.31Search in Google Scholar

27. Steurer, P., Wissert, R., Thomann, R. & Muelhaupt, R. (2009). Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327. DOI: 10.1002/marc.200800754.10.1002/marc.20080075421706607Search in Google Scholar

28. Van der Schuur, M. & Gaymans, R. (2007). Influence of morphology on the properties of segmented block copolymers. Polymer 48(7), 1998–2006. DOI: 10.1016/j.polymer.2007. in Google Scholar

29. Paszkiewicz, S. Szymczyk, A., Špitalski, Z., Mosnáček, J., Kwiatkowski, K. & Rosłaniec, Z. (2014). Structure and properties of nanocomposites based on PTT-block-PTMO copolymer and graphene oxide prepared by in situ polymerization. Europ. Polym. J. 50, 69–77. DOI: 10.1016/j.eurpolymj.2013. in Google Scholar

30. Szymczyk, A. Paszkiewicz, S. & Roslaniec, Z. (2013). Influence of intercalated organoclay on the phase structure and physical properties of PTT–PTMO block copolymers. Polym. Bull. 70(5), 1575–1590. DOI: 10.1007/s00289-012-0859-y.10.1007/s00289-012-0859-ySearch in Google Scholar

31. Spitalsky, Z., Danko, M. & Mosnacek, J. (2011). Preparation of functionalized graphene sheets. Current Oragan. Chem. 15(8), 1133–1150. DOI: 10.2174/138527211795202988.10.2174/138527211795202988Search in Google Scholar

32. Paszkiewicz, S., Szymczyk, A., Livanov, K., Wagner, H.D. & Roslaniec, Z. (2015). Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. eXPRESS Polym. Lett. 9(6), 509–524. DOI: 10.3144/express-polymlett.2015.49.Search in Google Scholar

33. Pilawka, R., Paszkiewicz, S. & Rosłaniec, Z. (2014). Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J. Therm. Anal. Calorim. 115(1), 451–460. DOI: 10.1007/s10973-013-3239-4.10.1007/s10973-013-3239-4Search in Google Scholar

34. Szymczyk, A., Nastalczyk, J., Sablong, R.J. & Roslaniec, Z. (2011). The influence soft segment length on structure and properties of poly(trimetylene terephthalate)-block-poly(tetramethylene oxide) segmented random copolymers. Polym. Adv. Technol. 21(1), 72–83. DOI: 10.1002/pat.1858.10.1002/pat.1858Search in Google Scholar

35. Pyda, M., Boller, A., Grebowicz, J., Chuah, H., Lebedev, B. V. & Wunderlich, B. (1998). Heat capacity of poly(trimethylene terephthalate). J. Polym. Sci. Phys. 36(14), 2499–2511. DOI: 10.1002/(SICI)1099-0488(199810)36:14<2499::AID-POLB4>3.0.CO;2-O.10.1002/(SICI)1099-0488(199810)36:14<2499::AID-POLB4>3.0.CO;2-OSearch in Google Scholar

36. Kim, H., Miura, Y. & Macosko, C.W. (2010). Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chem. Mater. 22, 3144–3450. DOI: 10.1021/cm100477v.10.1021/cm100477vSearch in Google Scholar

37. Hernández, M., del Mar Bernal, M., Verdejo, R. & Ezquerra, T.A. (2012). Overall performance of natural rubber/graphene nanocomposites. Compos. Sci. Technol. 73, 40–46. in Google Scholar

38. Lewis, S.L. (2007). Interface Control in Polymer Nanocomposites. Doctoral dissertation, Rensselaer Polytechnic Institute, Troy, New York, USA.Search in Google Scholar

39. Martin-Gallego, M., Verdejo, R., Lopez-Manchado, M.A. & Sangermano, M. (2011). Epoxy–graphene UV-cured nanocomposites. Polymer 52(21), 4664–4669. DOI: 10.1016/j.polymer.2011. in Google Scholar

40. Lee, J.K., Song, S. & Kim, B. (2012). Functionalized graphene sheets-epoxy based nanocomposites for cryotank composite applications. Polym. Compos. 33(8), 1263–1273. DOI: 10.1002/pc.22251.10.1002/pc.22251Search in Google Scholar

41. Torre, L., Lelli, G. & Kenny, J.M. (2006). Synthesis and characterization of sPS/montmorillonite nanocomposites. J. Appl. Polym. Sci. 100(6), 4957–4963. DOI: 10.1002/app.23803.10.1002/app.23803Search in Google Scholar

42. Ilčíková, M., Mosnáček, J., Mrlík, M., Sedláček, T., Csomorová, K., Czaniková, K. & Krupa, I. (2014). Influence of surface modification of carbon nanotubes on interactions with polystyrene-b-polyisoprene-b-polystyrene matrix and its photo-actuation properties. Polym. Adv. Technol. 25 (11), 1293–1300. DOI: 10.1002/pat.3324.10.1002/pat.3324Search in Google Scholar

43. Desai, T., Keblinski, P. & Kumar, S.K. (2005). Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 122(13), 134910–134918. DOI: 10.1063/1.1874852.10.1063/1.1874852Search in Google Scholar

44. Bansal, A., Yang, H., Li, C., Cho, K., Benicewicz, B.C., Kumar, S.K. & Schadler, L.S. (2005). Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 4(9), 693–698. DOI: 10.1038/nmat1447.10.1038/nmat144716086021Search in Google Scholar

45. Paszkiewicz, S. (2014). Polymer hybrid nanocomposites containing carbon nanoparticles. In situ synthesis and physical properties. Doctoral dissertation, West Pomeranian University of Technology, Szczecin, Poland.Search in Google Scholar

Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering