1. bookVolumen 18 (2018): Edición 4 (August 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

Measuring and evaluating the differences of compared images for a correct car silhouette categorization using integral transforms

Publicado en línea: 14 Aug 2018
Volumen & Edición: Volumen 18 (2018) - Edición 4 (August 2018)
Páginas: 168 - 174
Recibido: 17 Apr 2018
Aceptado: 18 Jul 2018
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés

[1] Stylidis, K., Wickman, C., Söderberg, R. (2015). Defining perceived quality in the automotive industry: An engineering approach. Procedia CIRP, 36 (2015), 165-170.Search in Google Scholar

[2] Bogue, R. (2013). Robotic vision boosts automotive industry quality and productivity. Industrial Robot: An International Journal, 40 (5), 415-419.10.1108/IR-04-2013-342Search in Google Scholar

[3] Di Leo, G., Liguori, C., Pietrosanto, A., Sommella, P. (2017). A vision system for the online quality monitoring of industrial manufacturing. Optics and Lasers in Engineering, 89, 162-168.10.1016/j.optlaseng.2016.05.007Search in Google Scholar

[4] Ružarovský, R., Delgado Sobrino, D.R., Holubek, R., Košťál, P. (2014). Automated in-process inspection method in the flexible production system iCIM 3000. Applied Mechanics and Materials, 693, 50-55.10.4028/www.scientific.net/AMM.693.50Search in Google Scholar

[5] Božek, P., Pivarčiová, E. (2013). Flexible manufacturing system with automatic control of product quality. Strojarstvo, 55 (3), 211-221.Search in Google Scholar

[6] Mery, D., Jaeger, T., Filbert, D. (2002). A review of methods for automated recognition of casting defects. http://www.academia.edu/20111824/A_review_of_methods_for_automated_recognition_of_casting_defects.Search in Google Scholar

[7] Świłło, S.J., Perzyk, M. (2013). Surface casting defects inspection using vision system and neural network techniques. Archives of Foundry Engineering, 13 (4).10.2478/afe-2013-0091Search in Google Scholar

[8] Dhillon, B.S. (2009). Human Reliability, Error, and Human Factors in Engineering Maintenance. CRC Press.10.1201/9781439803844Search in Google Scholar

[9] Huang, S.-H., Pan, Y-Ch. (2015). Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66, 1-10.10.1016/j.compind.2014.10.006Search in Google Scholar

[10] Frankovský, P., Ostertag, O., Trebuňa, F., Ostertagová, E., Kelemen, M. (2016). Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Applied Optics, 55 (18), 4856-4864.10.1364/AO.55.00485627409110Search in Google Scholar

[11] Kováč, J., Ďurovský, F., Hajduk, M. (2014). Utilization of virtual reality connected with robotized system. Applied Mechanics and Materials, 613, 273-278.10.4028/www.scientific.net/AMM.613.273Search in Google Scholar

[12] Frankovský, P., Hroncová, D., Delyová, I., Hudák, P. (2012). Inverse and forward dynamic analysis of two link manipulator. Procedia Engineering, 48, 158-163.10.1016/j.proeng.2012.09.500Search in Google Scholar

[13] Abramov, I.V., Nikitin, Yu.R., Abramov, A.I., Sosnovich, E.V., Božek, P. (2014). Control and diagnostic model of brushless DC motor. Journal of Electrical Engineering, 65 (5), 277- 282.10.2478/jee-2014-0044Search in Google Scholar

[14] Jena, D.B., Kuma, R. (2011). Implementation of wavelet denoising and image morphology on welding image for estimating HAZ and welding defect. Measurement Science Review, 11, (4).10.2478/v10048-011-0020-3Search in Google Scholar

[15] Neogi, N. Mohanta, K.D., Dutta, K.P. (2014). Review of vision-based steel surface inspection systems. EURASIP Journal on Image and Video Processing, 2014 (50).10.1186/1687-5281-2014-50Search in Google Scholar

[16] Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T. (2004). A fingerprint matching algorithm using Phase-Only Correlation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E87-A (3), 682-691.Search in Google Scholar

[17] Carl Zeiss Ltd. (2018). 3D inline measuring technology from ZEISS. https://www.zeiss.co.uk.Search in Google Scholar

[18] Druckmüller, M., Antoš, M., Druckmüllerová, H. (2005). Mathematical methods for visualization of the solar corona. Jemná mechanika a optika, 10, 302-304.Search in Google Scholar

[19] van den Dool, R. (2004). Fourier and Mellin Transform. Image Processing Tools. www.scribd.com/doc/9480198/Tools-Fourier-Mellin-Transform.Search in Google Scholar

[20] Derrode, S., Ghorbel, F. (2001). Robust and efficient Fourier-Mellin transform approximations for graylevel image reconstruction and complete invariant description. Computer Vision and Image Understanding, 83 (1), 57-78.10.1006/cviu.2001.0922Search in Google Scholar

[21] Gueham, M., Bouridane, A., Crookes, D. (2007). Automatic recognition of partial shoeprints based on phase-only correlation. In IEEE International Conference on Image Processing. IEEE, Vol. 4, 441-444.Search in Google Scholar

[22] Chen, Q.S. (1993). Image registration and its applications in medical imaging. Dissertation work, Vrije University, Brussels, Belgium.Search in Google Scholar

[23] Slížik, J., Harťanský, R. (2012). Metrology of electromagnetic intensity measurement in near field. Quality Innovation Prosperity, 17 (1), 57-66.Search in Google Scholar

[24] Hallon, J., Kováč, K., Bittera, M. (2018). Comparison of coupling networks for EFT Pulses Injection. Przeglad elektrotechniczny, 94 (2), 17-20.10.15199/48.2018.02.05Search in Google Scholar

[25] Harťanský, R., Smieško, V., Rafaj, M. (2017). Modifying and accelerating the method of moments calculation. Computing and Informatics, 36 (3), 664-682.10.4149/cai_2017_3_664Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo