1. bookVolumen 18 (2018): Edición 4 (August 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés
Acceso abierto

Frequency and time fault diagnosis methods of power transformers

Publicado en línea: 14 Aug 2018
Volumen & Edición: Volumen 18 (2018) - Edición 4 (August 2018)
Páginas: 162 - 167
Recibido: 17 Apr 2018
Aceptado: 10 Jul 2018
Detalles de la revista
License
Formato
Revista
eISSN
1335-8871
Primera edición
07 Mar 2008
Calendario de la edición
6 veces al año
Idiomas
Inglés

[1] Hrabovcova, V., Rafajdus, P., Franko, M., Hudák, M. (2009). Measuring and Modelling of Electrical Machines. Žilina, Slovakia: EDIS. ISBN 978-80-8070- 924-2. (in Slovak)Search in Google Scholar

[2] Wang, T., He, Y.G., Luo, Q.W., Deng, F.M., Zhang, C.L. (2017). Self-powered RFID sensor tag for fault diagnosis and prognosis of transformer winding. IEEE Sensors Journal, 17 (19), 6418-6430.10.1109/JSEN.2017.2738028Search in Google Scholar

[3] Islam, M.M., Lee, G., Hettiwatte, S.N. (2017). A nearest neighbour clustering approach for incipient fault diagnosis of power transformers. Electrical Engineering, 99 (3), 1109-1119.10.1007/s00202-016-0481-3Search in Google Scholar

[4] Zhang, Y.Y., Wei, H., Liao, R.J., Wang, Y.Y., Yang, L.J., Yan, C.Y. (2017). A new support vector machine model based on improved imperialist competitive algorithm for fault diagnosis of oil-immersed transformers. Journal of Electrical Engineering & Technology, 12 (2), 830-839.10.5370/JEET.2017.12.2.830Search in Google Scholar

[5] Peimankar, A., Weddell, S.J., Jalal, T., Lapthorn, A.C. (2017). Evolutionary multi-objective fault diagnosis of power transformers. Swarm and Evolutionary Computation, 36, 2017, 62-75.10.1016/j.swevo.2017.03.005Search in Google Scholar

[6] Ding, Y., Liu, Q. (2017). Data-driven fault diagnosis method for power transformers using modified Kriging model. Mathematical Problems in Engineering, 2017, art. ID 3068548.10.1155/2017/3068548Search in Google Scholar

[7] Wei, C.H., Long, H., Yan, L. (2017). Investigate transformer fault diagnosis performance of dissolved gas analysis with measurement error. Electric Power Components and Systems, 45 (8), 894-904.10.1080/15325008.2017.1310955Search in Google Scholar

[8] Yang, Q., Su, P.Y., Chen, Y. (2017). Comparison of impulse wave and sweep frequency response analysis methods for diagnosis of transformer winding faults. Energies, 10 (4), art. no. 431.10.3390/en10040431Search in Google Scholar

[9] Li, W.L., Liu, W.J., Wu, W., Zhang, X.B., Gao, Z.H., Wu, X.H. (2016). Fault diagnosis of star-connected auto-transformer based 24-pulse rectifier. Measurement, 91, 360-370.10.1016/j.measurement.2016.05.069Search in Google Scholar

[10] Ballal, M.S., Suryawanshi, H.M., Mishra, M.K., Chaudhari, B.N. (2016). Interturn faults detection of transformers by diagnosis of neutral current. IEEE Transactions on Power Delivery, 31 (3), 1096-1105.10.1109/TPWRD.2015.2461433Search in Google Scholar

[11] Dai, C.X., Liu, Z.G., Hu, K.T., Huang, K. (2016). Fault diagnosis approach of traction transformers in high-speed railway combining kernel principal component analysis with random forest. IET Electrical Systems in Transportation, 6 (3), 202-206.10.1049/iet-est.2015.0018Search in Google Scholar

[12] Rigatos, G., Siano, P. (2016). Power transformers' condition monitoring using neural modeling and the local statistical approach to fault diagnosis. International Journal of Electrical Power & Energy Systems, 80, 150-159.10.1016/j.ijepes.2016.01.019Search in Google Scholar

[13] Illias, H.A., Chai, X.R., Abu Bakar, A. (2016). Hybrid modified evolutionary particle swarm optimisationtime varying acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement, 90, 94-102.10.1016/j.measurement.2016.04.052Search in Google Scholar

[14] Mejia-Barron, A., Valtierra-Rodriguez, M., Granados- Lieberman, D., Olivares-Galvan, J.C., Escarela-Perez, R. (2018). The application of EMD-based methods for diagnosis of winding faults in a transformer using transient and steady state currents. Measurement, 117, 371-379.10.1016/j.measurement.2017.12.003Search in Google Scholar

[15] Wang, C., Zhang, Y.G. (2015). Fault correspondence analysis in complex electric power systems. Advances in Electrical and Computer Engineering, 15 (1), 11-16.10.4316/AECE.2015.01002Search in Google Scholar

[16] Li, Z.X., Jiang, Y., Hu, C.Q., Peng, Z.X. (2017). Difference equation based empirical mode decomposition with application to separation enhancement of multi-fault vibration signals. Journal of Difference Equations and Applications, 23 (1-2), 457-467.10.1080/10236198.2016.1254206Search in Google Scholar

[17] Li, Z.X., Jiang, Y., Hu, C., Peng, Z. (2016). Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: A review. Measurement, 90, 4-19.10.1016/j.measurement.2016.04.036Search in Google Scholar

[18] Glowacz, A., Glowacz, W., Glowacz, Z. (2015). Recognition of armature current of DC generator depending on rotor speed using FFT, MSAF-1 and LDA. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 17 (1), 64-69.10.17531/ein.2015.1.9Search in Google Scholar

[19] Brandt, M., Kascak, S. (2016). Failure identification of induction motor using SFRA method. In 2016 ELEKTRO: 11th International Conference, 16-18 May 2016. IEEE, 269-272.10.1109/ELEKTRO.2016.7512079Search in Google Scholar

[20] Petras, J., Kurimsky, J., Balogh, J., Cimbala, R., Dzmura, J., Dolnik, B., Kolcunova, I. (2016). Thermally stimulated acoustic energy shift in transformer oil. Acta Acoustica United with Acoustica, 102 (1), 16-22.10.3813/AAA.918920Search in Google Scholar

[21] Brandt, M. (2016). Identification failure of 3 MVA furnace transformer. In Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE), 20-22 June 2016. IEEE, 6-10.10.1109/DEMISEE.2016.7530472Search in Google Scholar

[22] Chen, W.G., Liu, J., Wang, Y.Y., Liang, L.M., Zhao, J.B., Yue, Y.F. (2008). The measuring method for internal temperature of power transformer based on FBG sensors. In 2008 International Conference on High Voltage Engineering and Application (ICHVE), 9-12 November 2008. IEEE, 672- 676.Search in Google Scholar

[23] Werelius, P., Ohlen, M., Adeen, L., Brynjebo, E. (2007). Measurement considerations using SFRA for condition assessment of Power Transformers. In 2008 International Conference on Condition Monitoring and Diagnosis, 21-24 April 2008. IEEE, 898-901.Search in Google Scholar

[24] Chitaliya, G.H., Joshi, S.K. (2013). Finite Element Method for designing and analysis of the transformer - A retrospective. In International Conference on Recent Trends in Power, Control and Instrumentation Engineering (PCIE 2013). Association of Computer Electronics and Electrical Engineers, 54-58.Search in Google Scholar

[25] Heathcote, M.J. (2007). The J & P Transformer Book, 13th Edition. Elsevier, ISBN 978-0-7506-8164-3.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo