1. bookVolumen 25 (2017): Edición 4 (December 2017)
Detalles de la revista
License
Formato
Revista
eISSN
1898-9934
ISSN
1426-2630
Primera edición
09 Jun 2008
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Tarski Geometry Axioms. Part III

Publicado en línea: 28 Mar 2018
Volumen & Edición: Volumen 25 (2017) - Edición 4 (December 2017)
Páginas: 289 - 313
Recibido: 29 Nov 2017
Detalles de la revista
License
Formato
Revista
eISSN
1898-9934
ISSN
1426-2630
Primera edición
09 Jun 2008
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495-510. Springer, 2014. doi: 10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638Abierto DOISearch in Google Scholar

[2] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi: 10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4Abierto DOISearch in Google Scholar

[3] Roland Coghetto and Adam Grabowski. Tarski geometry axioms - Part II. Formalized Mathematics, 24(2):157-166, 2016. doi: 10.1515/forma-2016-0012.10.1515/forma-2016-0012Abierto DOISearch in Google Scholar

[4] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcic. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249-269, 2015.Search in Google Scholar

[5] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS - Annals of Computer Science and Information Systems, pages 373-381, 2016. doi: 10.15439/2016F290.10.15439/2016F290Search in Google Scholar

[6] Haragauri Narayan Gupta. Contributions to the Axiomatic Foundations of Geometry. PhD thesis, University of California-Berkeley, 1965.Search in Google Scholar

[7] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University ofWellington, New Zealand, 2012. Master’s thesis.Search in Google Scholar

[8] Timothy James McKenzie Makarios. The independence of Tarski’s Euclidean Axiom. Archive of Formal Proofs, October 2012. Formal proof development.Search in Google Scholar

[9] Timothy James McKenzie Makarios. A further simplification of Tarski’s axioms of geometry. Note di Matematica, 33(2):123-132, 2014.Search in Google Scholar

[10] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139-156. Springer, 2007.10.1007/978-3-540-77356-6_9Search in Google Scholar

[11] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167-176, 2014. doi: 10.2478/forma-2014-0017.10.2478/forma-2014-0017Abierto DOISearch in Google Scholar

[12] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo