[[1] Michael Beeson and Larry Wos. OTTER proofs in Tarskian geometry. In International Joint Conference on Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages 495-510. Springer, 2014. doi: 10.1007/978-3-319-08587-6 38.10.1007/978-3-319-08587-638]DOI öffnenSearch in Google Scholar
[[2] Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi: 10.1007/s10817-016-9374-4.10.1007/s10817-016-9374-4]DOI öffnenSearch in Google Scholar
[[3] Roland Coghetto and Adam Grabowski. Tarski geometry axioms - Part II. Formalized Mathematics, 24(2):157-166, 2016. doi: 10.1515/forma-2016-0012.10.1515/forma-2016-0012]DOI öffnenSearch in Google Scholar
[[4] Sana Stojanovic Durdevic, Julien Narboux, and Predrag Janiˇcic. Automated generation of machine verifiable and readable proofs: a case study of Tarski’s geometry. Annals of Mathematics and Artificial Intelligence, 74(3-4):249-269, 2015.]Search in Google Scholar
[[5] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of ACSIS - Annals of Computer Science and Information Systems, pages 373-381, 2016. doi: 10.15439/2016F290.10.15439/2016F290]Search in Google Scholar
[[6] Haragauri Narayan Gupta. Contributions to the Axiomatic Foundations of Geometry. PhD thesis, University of California-Berkeley, 1965.]Search in Google Scholar
[[7] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. Victoria University ofWellington, New Zealand, 2012. Master’s thesis.]Search in Google Scholar
[[8] Timothy James McKenzie Makarios. The independence of Tarski’s Euclidean Axiom. Archive of Formal Proofs, October 2012. Formal proof development.]Search in Google Scholar
[[9] Timothy James McKenzie Makarios. A further simplification of Tarski’s axioms of geometry. Note di Matematica, 33(2):123-132, 2014.]Search in Google Scholar
[[10] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139-156. Springer, 2007.10.1007/978-3-540-77356-6_9]Search in Google Scholar
[[11] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167-176, 2014. doi: 10.2478/forma-2014-0017.10.2478/forma-2014-0017]DOI öffnenSearch in Google Scholar
[[12] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9]Search in Google Scholar