Acceso abierto

Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens


Cite

Amem M.H.M., Al - Daraji H.J. (2011). Zinc improves egg quality in Cobb 500 broiler breeder females. Int. J. Poultry Sci., 10: 471-476.Search in Google Scholar

Ao T., Pierce J. (2013). The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poultry Sci. J., 9: 5-16.Search in Google Scholar

Ao T., Pierce J.L., Power R., Dawson K.A., Pescatore A.J., Cantor A.H., Ford M.J. (2006). Evaluation of bioplex Zn as an organic zinc source for chicks. Int. J. Poultry Sci., 5: 808-811.Search in Google Scholar

Armstrong T.A., Flowers W.L., Spears J.W., Nielsen F.H. (2002). Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts. J. Anim. Sci., 80: 154-161.Search in Google Scholar

ASAE (2001). ASAE Standards S459: Shear and Three Point Bending Test of Animal Bone. American Society of Agricultural Engineers, St. Joseph, USA.Search in Google Scholar

Bahakaim A.S.A., Magied H.A.A., Osman S.M.H., Omar A.S., Abdel Malak N.Y., Ramadan N.A. (2014). Effect of using different levels and sources of zinc in layer’s diets on egg zinc enrichment. Egypt Poultry Sci., 34: 39-56.Search in Google Scholar

Bain M.M. (1997). Areinterpretation of eggshell strength. In: Egg and eggshell quality, Solomon S.E. (ed.). London, Manson Publishing, pp. 131-142.Search in Google Scholar

Beattie J.H., Avenell A. (1992). Trace element nutrition and bone metabolism. Royaume-Uni: Cambridge University Press, Cambridge.Search in Google Scholar

Brody T. (1997). Nutritional biochemistry. Academic Press, New York, USA, pp. 581-591.Search in Google Scholar

Etches R.J. (1987). Calcium logistics in the laying hens. J. Nutr., 117: 619-628.Search in Google Scholar

Hadley K.B., Newman S.M., Hunt J.R. (2010). Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem., 21: 297-303.Search in Google Scholar

Hett A. (2004). Nanotechnology: Small matter. Many unknowns. Swiss Reinsurance Company, Zurich.Search in Google Scholar

Huang S., Wang L., Liu L., Hou Y., Li L. (2015). Nanotechnology in agriculture, livestock, and aquaculture in China: Areview. Agron. Sustain. Dev., 35: 369-400.Search in Google Scholar

Hudson B.P., Dozier W.A., Wilson J.L., Sander J.E., Ward T.L. (2004). Reproductive performance and immune status of caged broiler breeder hens provided diets supplemented with either inorganic or organic sources of zinc from hatching to 65 wk of age. J. Appl. Poultry Res., 13: 349-359.Search in Google Scholar

Idowu O.M.O., Ajuwon R.O., Oso A.O., Akinloye O.A. (2011). Effect of zinc supplementation on laying performance, serum chemistry and Zn residue in tibia bone, liver, excreta and egg shell of laying hens. Int. J. Poultry Sci., 10: 225-230.Search in Google Scholar

Innocenti A., Zimmerman S., Ferry J.G., Scozzafava A., Supuan C.T. (2004). Carbonic anhydrase inhibitors. Inhibition of the zinc and cobalt gamma-class enzyme from the archaeon Methanosarcina thermophila with anions. Bioorg. Med. Chem. Lett., 14: 3327-3331.Search in Google Scholar

Jonchere V.V., Brionne A.B., Gautron J.J., Nys Y.Y. (2012). Identification of uterine ion transporters for mineralisation precursors of the avian eggshell. BMC Physiol., 12: 10.Search in Google Scholar

Kidd M.T., Ferket P.R., Qureshi M.A. (1996). Zinc metabolism with special reference to its role in immunity. World’s Poultry Sci. J., 52: 309-323.Search in Google Scholar

Kita K., Hohmura I., Okumura J. (1997). Influence of dietary zinc methionine supplementation on eggshell quality in laying hens under hot climate environment. Japan Poultry Sci., 34: 21-26.Search in Google Scholar

Kucuk O., Sahin N., Sahin K. (2003). Supplemental zinc and vitamin Acan alleviate negative effects of heat stress in broiler chickens. Biol. Trace Elem. Res., 93: 225-235.Search in Google Scholar

Leeson S. (2005). Trace mineral requirements of poultry validity of the NRCrecommendations. In: Re-defining Mineral Nutrition, Taylorpickard J.A., Tucker L.A. (eds). Nottingham, UK, pp. 107-117.Search in Google Scholar

Leeson S., Summers J.D., (2005). Commercial poultry production. 3rd ed., University Books, Guelph, Ontario, Canada, pp. 165.Search in Google Scholar

Mezes M., Erdelyi M., Balogh K. (2012). Deposition of organic trace metal complexes as feed additives in farm animals. Eur. Chem. Bull. Sec. C, 1: 410-413.Search in Google Scholar

Midilli M., Salman M., Muğlalı Ö.H., Çenesiz S., Ormancı N., Pakdil M., Gürcanİ.S. (2015). The effects of different zinc sources and microbial phytase supplementation on the tibial bone properties, strength and Zn mineralization broilers fed with diet low phosphorus. J. Facul. Vet. Med., Kafkas Univ., 21: 607-614.Search in Google Scholar

Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh S., Nazaran M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc methionine on performance in broiler chickens. Brit. Poultry Sci., 56: 486-493.Search in Google Scholar

Mohanna C., Nys Y. (1999). Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. Brit. Poultry Sci., 40: 108-114.Search in Google Scholar

Nagata M., Lönnerdal B. (2011). Role of zinc in cellular zinc trafficking and mineralization inamurine osteoblast-like cell line. J. Nutr. Biochem., 22: 172-178.Search in Google Scholar

NRC (1994). National Research Council, Nutrient requirements of poultry. 9th ed. National Academy Press, Washington, DC.Search in Google Scholar

Nys Y., Hincke M.T., Arias J.L., Garcia - Ruiz J.M., Solomon S.E. (1999). Avian eggshell mineralization. Avian Poultry Biol. Rev., 10: 143-166.Search in Google Scholar

Ovesen J., Moller - Madsen B., Thomsen J.S., Danscher G., Mosekilde L. (2001). The positive effects of zinc on skeletal strength in growing rats. Bone, 29: 565-570.Search in Google Scholar

Peretz A., Papadopoulos T., Willems D., Hotimsky A., Michiels N., Siderova V., Bergmann P., Neve J. (2001). Zinc supplementation increases bone alkaline phosphatase in healthy men. J. Trace Elem. Med. Biol., 15: 175-178.Search in Google Scholar

Rossi P., Rutz F., Anciuti M.A., Rech J.L., Zauk N.H.F. (2007). Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. J. Appl. Poultry Res., 16: 219-225.Search in Google Scholar

Sahoo A., Swain R.K., Mishra S.K. (2014). Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. Inter. J. Adv. Res., 2: 828-837.Search in Google Scholar

Sahraei M., Janmmohamdi H., Taghizadeh A., Cheraghi S. (2012). Effect of different zinc sources on tibia bone morphology and ash content of broiler chickens. Adv. Biol. Res., 6: 128-132.Search in Google Scholar

Scrimgeour A.G., Stahl C.H.H., Mc Clung J.P., Marchitelli L.J., Young A.J. (2007). Moderate zinc deficiency negatively affects biomechanical properties of tibiae independently of body composition. J. Nutr. Biochem., 18: 813-819.Search in Google Scholar

Shelton J.L., Southern L.L. (2007). Interactive effect of zinc, copper and manganese in diets for broilers. Int. J. Poultry Sci., 6: 466-469.Search in Google Scholar

Spears J.W. (1989). Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects on growth and performance of growing heifers. J. Anim. Sci., 67: 835-843.Search in Google Scholar

Stofanikova J., Saly J., Molnar L., Sesztakova E., Bilek J. (2011). The influence of dietary zinc content on mechanical properties of chicken tibiotarsal bone. Acta Vet., 61: 531-541.Search in Google Scholar

Sunder G.S., Panda A.K., Gopinath N.C.S., Rao S.R., Raju M.V.L.N., Reddy M.R., Kumar C.V. (2008). Effects of higher levels of zinc supplementation on performance, mineral availability, and immune competence in broiler chickens. J. Appl. Poultry Res., 17: 79-86.Search in Google Scholar

Swiatkiewicz S., Koreleski J. (2008). The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. Vet. Med., 53: 555-563.Search in Google Scholar

Tabatabaie M.M., Aliarabi H., Saki A.A., Ahmadi A., Siyar S.A. (2007) Effect of different sources and levels of zinc on egg quality and laying hen performance. Pak. J. Biol. Sci., 10: 3476-3478.Search in Google Scholar

Wang X., Fosmire G.J., Gay C.V., Leach R.M. (2002). Short-term zinc deficiency inhibits chondrocyte proliferation and induces cell apoptosis in the epiphyseal growth plate of young chickens. J. Nutr., 132: 665-673.Search in Google Scholar

Webster A. (2004). Welfare implications of avian osteoporosis. Poultry Sci., 83: 184-192.Search in Google Scholar

Wedekind K.J., Hortin A.E., Baker D.H. (1992). Methodology for assessing zinc bioavailability: efficacy estimated for zinc-methionine, zinc sulphate, and zinc oxide. J. Anim. Sci., 70: 178-187.Search in Google Scholar

Wilson J.H., Ruszler P.L. (1996). Effects of dietary boron supplementation on laying hens. Brit. Poultry Sci., 37: 723-729.Search in Google Scholar

Yamaguchi M. (2010). Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem., 338: 241-254.Search in Google Scholar

Yamaguchi M., Kishi S. (1996). Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol. Cell. Biochem., 158: 171-177.Search in Google Scholar

Zamani A., Rahmani H.R., Pourreza J. (2005). Effect of different levels of manganese and zinc on performance traits and breaking eggs in laying hens. Pak. J. Biol. Sci., 8: 1035-1040. Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine