Acceso abierto

Concept of Using the Brain-Computer Interface to Control Hand Prosthesis


Cite

Ramadan, R.A.; Vasilakos, A. V. Brain computer interface: control signals review. Neurocomputing, vol. 223, 2017, 26–44, doi:10.1016/J. NEUCOM.2016.10.024. Search in Google Scholar

Bernal, S.L.; Celdrán, A.H.; Pérez, G.M. Neuronal Jamming cyberattack over invasive BCIs affecting the resolution of tasks requiring visual capabilities. Comput. Secur. vol. 112, 2022, doi:10.1016/J.COSE.2021.102534. Search in Google Scholar

Shivwanshi, R.R.; Nirala, N. Concept of AI for acquisition and modeling of noninvasive modalities for BCI. Artif. Intell. Brain-Computer Interface, 2022, 121–144, doi:10.1016/ B978-0-323-91197-9.00007-2. Search in Google Scholar

Dagdevir, E.; Tokmakci, M. Optimization of preprocessing stage in EEG based BCI systems in terms of accuracy and timing cost. Biomed. Signal Process. Control, 2021, 67, doi:10.1016/j. bspc.2021.102548. Search in Google Scholar

Bassi, P.R.A.S.; Rampazzo, W.; Attux, R. Transfer learning and SpecAugment applied to SSVEP based BCI classification. arXiv 2020, doi:10.1016/j. bspc.2021.102542. Search in Google Scholar

Vilela, M.; Hochberg, L.R. Applications of brain-computer interfaces to the control of robotic and prosthetic arms. In Handbook of Clinical Neurology; Elsevier B.V., 2020; vol. 168, pp. 87–99. Search in Google Scholar

Na, R.; Hu, C.; Sun, Y.; Wang, S.; Zhang, S.; Han, M.; Yin, W.; Zhang, J.; Chen, X.; Zheng, D. An embedded lightweight SSVEP-BCI electric wheelchair with hybrid stimulator. Digit. Signal Process. vol. 116, 2021, 103101, doi:10.1016/J. DSP.2021.103101. Search in Google Scholar

Robinson, N.; Mane, R.; Chouhan, T.; Guan, C. Emerging trends in BCI-robotics for motor control and rehabilitation. Curr. Opin. Biomed. Eng. vol. 20, 2021, 100354, doi:10.1016/J. COBME.2021.100354. Search in Google Scholar

Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P.P.; Accardo, A. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study. Comput. Methods Programs Biomed. vol. 198, 2021, doi:10.1016/j.cmpb.2020.105808. Search in Google Scholar

Soman, S.; Murthy, B.K. Using Brain Computer Interface for synthesized speech communication for the physically disabled. In Proceedings of the Procedia Computer Science; Elsevier B.V., vol. 46, 2015; 292–298. Search in Google Scholar

Noori, F.M.; Naseer, N.; Qureshi, N.K.; Nazeer, H.; Khan, R.A. Optimal feature selection from fNIRS signals using genetic algorithms for BCI. Neurosci. Lett. vol. 647, 2017, 61–66, doi:10.1016/j.neulet.2017.03.013. Search in Google Scholar

Gubert, P.H.; Costa, M.H.; Silva, C.D.; Trofino-Neto, A. The performance impact of data augmentation in CSP-based motor-imagery systems for BCI applications. Biomed. Signal Process. Control, vol. 62, 2020, doi:10.1016/j.bspc.2020.102152. Search in Google Scholar

Hernández-Del-Toro, T.; Reyes-García, C.A.; Villaseñor-Pineda, L. Toward asynchronous EEG-based BCI: Detecting imagined words segments in continuous EEG signals. Biomed. Signal Process. Control, vol. 65, 2021, doi:10.1016/j. bspc.2020.102351. Search in Google Scholar

Shi, B.; Wang, Q.; Yin, S.; Yue, Z.; Huai, Y.; Wang, J. A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing, vol. 443, 2021, 12–25, doi:10.1016/j.neucom.2021.02.051. Search in Google Scholar

Janani A.; Sasikala M.; Chhabra, H.; Shajil, N.; Venkatasubramanian, G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomed. Signal Process. Control, vol. 62, 2020, 102133, doi:10.1016/j.bspc.2020.102133. Search in Google Scholar

Zarrintaj, P.; Saeb, M.R.; Ramakrishna, S.; Mozafari, M. Biomaterials selection for neuroprosthetics. Curr. Opin. Biomed. Eng., vol. 6, 2018, 99–109. Search in Google Scholar

Kasim, M.A.A.; Low, C.Y.; Ayub, M.A.; Zakaria, N.A.C.; Salleh, M.H.M.; Johar, K.; Hamli, H. User-Friendly LabVIEW GUI for Prosthetic Hand Control Using Emotiv EEG Headset. In Proceedings of the Procedia Computer Science; Elsevier B.V., vol. 105, 2017; 276–281. Search in Google Scholar

Lange, G.; Low, C.Y.; Johar, K.; Hanapiah, F.A.; Kamaruzaman, F. Classification of Electroencephalogram Data from Hand Grasp and Release Movements for BCI Controlled Prosthesis. Procedia Technol., vol. 26, 2016, 374–381, doi:10.1016/j.protcy.2016.08.048. Search in Google Scholar

Alazrai, R.; Alwanni, H.; Daoud, M.I. EEG-based BCI system for decoding finger movements within the same hand. Neurosci. Lett., vol. 698, 2019, 113–120, doi:10.1016/j.neulet.2018.12.045. Search in Google Scholar

Downey, J.E.; Brooks, J.; Bensmaia, S.J. Artificial sensory feedback for bionic hands. In Intelligent Biomechatronics in Neurorehabilitation; Elsevier, 2019; pp. 131–145 ISBN 9780128149423. Search in Google Scholar

Guger, C.; Harkam, W.; Hertnaes, C.; Pfurtscheller, G. Prosthetic Control by an EEG-based Brain- Computer Interface (BCI). Search in Google Scholar

Müller-Putz, G.R.; Pfurtscheller, G. Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans. Biomed. Eng., vol. 55, 2008, 361–364, doi:10.1109/TBME.2007.897815. Search in Google Scholar

Beyrouthy, T.; Al Kork, S.K.; Korbane, J.A.; Abdulmonem, A. EEG Mind controlled Smart Prosthetic Arm. In Proceedings of the 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech); IEEE, 2016; pp. 404–409. Search in Google Scholar

Constantine, A.; Asanza, V.; Loayza, F.R.; Peláez, E.; Peluffo-Ordóñez, D. BCI System using a Novel Processing Technique Based on Electrodes Selection for Hand Prosthesis Control. IFAC-PapersOnLine, vol. 54, 2021, 364–369, doi:10.1016/J.IFACOL.2021.10.283. Search in Google Scholar

Sensinger, J.W.; Hill, W.; Sybring, M. Prostheses— Assistive Technology—Upper. Encycl. Biomed. Eng. vols. 2-3, 2019, 632–644, doi:10.1016/ B978-0-12-801238-3.99912-4. Search in Google Scholar

EMOTIV Website online: www.emotiv.com (accessed on August 2022) Search in Google Scholar

ARDUINO Website online: https://store.arduino.cc/ (accessed on August 2022) Search in Google Scholar

BLENDER Website online: www.blender.org (accessed on August 2022) Search in Google Scholar