Zeitschriften und Ausgaben

Volumen 9 (2022): Heft 16 (June 2022)

Volumen 8 (2021): Heft 15 (November 2021)

Volumen 8 (2021): Heft 14 (October 2021)

Volumen 7 (2020): Heft 13 (November 2020)

Volumen 6 (2019): Heft 12 (December 2019)

Volumen 6 (2019): Heft 11 (September 2019)

Volumen 5 (2018): Heft 10 (December 2018)

Volumen 5 (2018): Heft 9 (September 2018)

Volumen 4 (2017): Heft 8 (December 2017)

Volumen 4 (2017): Heft 7 (May 2017)

Volumen 3 (2016): Heft 6 (December 2016)

Volumen 3 (2016): Heft 5 (March 2016)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 6 (2019): Heft 12 (December 2019)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Suche

4 Artikel
Open Access

Yes, Gauss’s Answer is Indeed Correct!

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 5 - 8

Zusammenfassung

Abstract

A meaning of three dots (. . . ) and the Gauss’s sum.

Schlüsselwörter

  • three dots
  • Gauss sum
Open Access

It’s Common Knowledge

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 9 - 32

Zusammenfassung

Abstract

We discuss some old common knowledge puzzles and introduce a lot of new common knowledge puzzles.

Schlüsselwörter

  • logic puzzles
Open Access

Crazy Sequential Representations of Numbers for Small Bases

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 33 - 48

Zusammenfassung

Abstract

Throughout history, recreational mathematics has always played a prominent role in advancing research. Following in this tradition, in this paper we extend some recent work with crazy sequential representations of numbers− equations made of sequences of one through nine (or nine through one) that evaluate to a number. All previous work on this type of puzzle has focused only on base ten numbers and whether a solution existed. We generalize this concept and examine how this extends to arbitrary bases, the ranges of possible numbers, the combinatorial challenge of finding the numbers, efficient algorithms, and some interesting patterns across any base. For the analysis, we focus on bases three through ten. Further, we outline several interesting mathematical and algorithmic complexity problems related to this area that have yet to be considered.

Schlüsselwörter

  • representations
  • algorithms
Open Access

Infinite Tiles of Regular rep-tiles

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 49 - 105

Zusammenfassung

Abstract

Here I describe an infinite number of fractal tiles of regular rep-tiles in all dimensions above 1. Each rep-tile’s set of tiles can be divided into subsets based on certain visual characteristics. As fractals, they can be programmed and rendered in any size. They can be arranged in groups according to their aesthetic properties; used as an unending visual and pattern-recognition training ground for AI; and even animated as increments from one to the next.

Schlüsselwörter

  • rep-tiles
  • fractal
  • tiles
  • square
  • triangle
4 Artikel
Open Access

Yes, Gauss’s Answer is Indeed Correct!

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 5 - 8

Zusammenfassung

Abstract

A meaning of three dots (. . . ) and the Gauss’s sum.

Schlüsselwörter

  • three dots
  • Gauss sum
Open Access

It’s Common Knowledge

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 9 - 32

Zusammenfassung

Abstract

We discuss some old common knowledge puzzles and introduce a lot of new common knowledge puzzles.

Schlüsselwörter

  • logic puzzles
Open Access

Crazy Sequential Representations of Numbers for Small Bases

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 33 - 48

Zusammenfassung

Abstract

Throughout history, recreational mathematics has always played a prominent role in advancing research. Following in this tradition, in this paper we extend some recent work with crazy sequential representations of numbers− equations made of sequences of one through nine (or nine through one) that evaluate to a number. All previous work on this type of puzzle has focused only on base ten numbers and whether a solution existed. We generalize this concept and examine how this extends to arbitrary bases, the ranges of possible numbers, the combinatorial challenge of finding the numbers, efficient algorithms, and some interesting patterns across any base. For the analysis, we focus on bases three through ten. Further, we outline several interesting mathematical and algorithmic complexity problems related to this area that have yet to be considered.

Schlüsselwörter

  • representations
  • algorithms
Open Access

Infinite Tiles of Regular rep-tiles

Online veröffentlicht: 07 Feb 2020
Seitenbereich: 49 - 105

Zusammenfassung

Abstract

Here I describe an infinite number of fractal tiles of regular rep-tiles in all dimensions above 1. Each rep-tile’s set of tiles can be divided into subsets based on certain visual characteristics. As fractals, they can be programmed and rendered in any size. They can be arranged in groups according to their aesthetic properties; used as an unending visual and pattern-recognition training ground for AI; and even animated as increments from one to the next.

Schlüsselwörter

  • rep-tiles
  • fractal
  • tiles
  • square
  • triangle

Planen Sie Ihre Fernkonferenz mit Scienceendo