Zeitschriften und Ausgaben

Volumen 9 (2022): Heft 16 (June 2022)

Volumen 8 (2021): Heft 15 (November 2021)

Volumen 8 (2021): Heft 14 (October 2021)

Volumen 7 (2020): Heft 13 (November 2020)

Volumen 6 (2019): Heft 12 (December 2019)

Volumen 6 (2019): Heft 11 (September 2019)

Volumen 5 (2018): Heft 10 (December 2018)

Volumen 5 (2018): Heft 9 (September 2018)

Volumen 4 (2017): Heft 8 (December 2017)

Volumen 4 (2017): Heft 7 (May 2017)

Volumen 3 (2016): Heft 6 (December 2016)

Volumen 3 (2016): Heft 5 (March 2016)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 7 (2020): Heft 13 (November 2020)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2182-1976
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

Suche

5 Artikel
Uneingeschränkter Zugang

Counting Clues in Crosswords

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 1 - 7

Zusammenfassung

Abstract

We consider different ways to count the number of clues in American-style crossword puzzle grids. One yields a basic parity result for symmetric square grids. Another works efficiently even for non-symmetric grids that are already numbered. We further discuss the upper limit on the number of clues in a crossword puzzle with no 2-letter answers, and open questions are given. As a bonus, a mathematically-themed crossword puzzle is included!

Uneingeschränkter Zugang

Making the Unfair Fair

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 9 - 26

Zusammenfassung

Uneingeschränkter Zugang

Next Level Odd-One-Out Puzzles

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 27 - 51

Zusammenfassung

Abstract

A commonly occurring task in intelligence tests or recreational riddles is to “find the odd one out”, that is, to determine a unique element of a set of objects that is somehow special. It is somewhat arbitrary what exactly the relevant feature is that makes one object different. But once that is settled, the answer becomes obvious. Not so with a puzzle popularized by Tanya Khovanova to express her dislike for this type of puzzle. Here, it is a more complicated relation between the objects and the features that determines the odd object, because there is only one object that does not have a unique feature expression. This puzzle inspired me to look for even more complicated relations between objects, features and feature expressions that appear to be even more symmetric, but actually still single out a “special object”. This paper provides useful definitions, a theoretical basis, solution algorithms, and several examples for this kind of puzzle.

Schlüsselwörter

  • puzzles
  • symmetry
  • combinatorics
Uneingeschränkter Zugang

Stay in Command: Optimal Play for Two Person Generala

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 53 - 70

Zusammenfassung

Uneingeschränkter Zugang

The Classification of Magic SET Squares

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 71 - 94

Zusammenfassung

Abstract

A magic SET square is a 3 by 3 table of SET cards such that each row, column, diagonal, and anti-diagonal is a set. We allow the following transformations of the square: shuffling features, shuffling values within the features, rotations and reflections of the square. Under these transformations, there are 21 types of magic SET squares. We calculate the number of squares of each type. In addition, we discuss a game of SET tic-tac-toe.

5 Artikel
Uneingeschränkter Zugang

Counting Clues in Crosswords

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 1 - 7

Zusammenfassung

Abstract

We consider different ways to count the number of clues in American-style crossword puzzle grids. One yields a basic parity result for symmetric square grids. Another works efficiently even for non-symmetric grids that are already numbered. We further discuss the upper limit on the number of clues in a crossword puzzle with no 2-letter answers, and open questions are given. As a bonus, a mathematically-themed crossword puzzle is included!

Uneingeschränkter Zugang

Making the Unfair Fair

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 9 - 26

Zusammenfassung

Uneingeschränkter Zugang

Next Level Odd-One-Out Puzzles

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 27 - 51

Zusammenfassung

Abstract

A commonly occurring task in intelligence tests or recreational riddles is to “find the odd one out”, that is, to determine a unique element of a set of objects that is somehow special. It is somewhat arbitrary what exactly the relevant feature is that makes one object different. But once that is settled, the answer becomes obvious. Not so with a puzzle popularized by Tanya Khovanova to express her dislike for this type of puzzle. Here, it is a more complicated relation between the objects and the features that determines the odd object, because there is only one object that does not have a unique feature expression. This puzzle inspired me to look for even more complicated relations between objects, features and feature expressions that appear to be even more symmetric, but actually still single out a “special object”. This paper provides useful definitions, a theoretical basis, solution algorithms, and several examples for this kind of puzzle.

Schlüsselwörter

  • puzzles
  • symmetry
  • combinatorics
Uneingeschränkter Zugang

Stay in Command: Optimal Play for Two Person Generala

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 53 - 70

Zusammenfassung

Uneingeschränkter Zugang

The Classification of Magic SET Squares

Online veröffentlicht: 18 Sep 2020
Seitenbereich: 71 - 94

Zusammenfassung

Abstract

A magic SET square is a 3 by 3 table of SET cards such that each row, column, diagonal, and anti-diagonal is a set. We allow the following transformations of the square: shuffling features, shuffling values within the features, rotations and reflections of the square. Under these transformations, there are 21 types of magic SET squares. We calculate the number of squares of each type. In addition, we discuss a game of SET tic-tac-toe.

Planen Sie Ihre Fernkonferenz mit Scienceendo