Online veröffentlicht: 19 Dec 2018 Seitenbereich: 83 - 93
Zusammenfassung
Abstract
A systematic theoretical study using density functional theory is presented to estimate the structural, electronic, and charge-transfer characteristics of a symmetric fluorination of acenequinones outer rings. The change in aromaticity of model derivatives was described by different types of aromaticity indices. By considering a hopping mechanism and using the Marcus theory in combination with the Einstein-Smoluchowski relation, electronic drift mobilities were predicted for selected dimer configurations obtained from X-ray structures of anthraquinone, 6,13-pentacenequinone and its octafluorinated derivatives. The analysis of obtained data showed that the fluorination of the outer rings of acenequinones can lower the energy of the lowest unoccupied molecular orbital to the range from −3.0 to −4.0 eV, i.e. typical for organic n-type semiconducting materials. Finally, potential electric semiconductivity of available X-ray structures relating to drift mobilities was discussed.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 94 - 98
Zusammenfassung
Abstract
The title compound, C14H20INO, is a molecule with three stereogenic centres. It absolute configuration was derived from the synthesis and confirmed by structure determination (AD, Flack (Parsons’) parameter: 0.031 (8)). The expected stereochemistry of atoms N1 was confirmed to be S, C5 was confirmed to S, C6 was confirmed to R. The central N-heterocyclic ring is not planar and adopts a half-chair conformation. A calculation of least-squares planes showed that these rings are puckered in such a manner that the five atoms: C5, C6, C7, C12 and C13 (the second ring: C1, C2, C3, C4, C5 and N1) are planar, while atom N1 is displaced from these plane with the out-of-plane displacement of −0.694 (4) and −0.670 (5) Å in the second ring, respectively. Dihedral angle between the planes of the central N-heterocyclic rings is 23.4 (2)°. Crystal structure is also stabilized by C—H···O hydrogen interactions.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 99 - 106
Zusammenfassung
Abstract
Zinc chloride is a commonly used activator in chemical activation of activated carbon. Various carbonaceous materials have been studied as potential source of activated carbon. The operating conditions are manipulated with attention to improve the properties and performance of activated carbon in the adsorption of water pollutants. However, the generalized attributes of zinc chloride activation in relation to the adsorptive performance of activated carbon are not well documented in much of published literature. Therefore, the present work is aimed to highlight the activation strategies and mechanisms of zinc chloride activation of activated carbon. The roles of impregnation ratio, period of activation and temperature are discussed to offer some insight into textural characteristics of activated carbon. The case studies on methylene blue adsorption are integrated to shed light on the external factors affecting the adsorption.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 107 - 113
Zusammenfassung
Abstract
Arsenic (As) is metalloid, naturally present in the environment but also introduced by human activities. It is toxic and carcinogenic and its exposure to low or high concentrations can be fatal to human health. Arsenic contamination in drinking water threatens more than 150 million peoples all over the world. Therefore, treatment of As contaminated water is of unquestionable importance. The present review begins with an overview of As chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. The most common As removal processes (chemical precipitation, adsorption, ion exchange, membrane filtration, phytoremediation and electrocoagulation) are presented with discussion of their advantages, drawbacks and the main recent achievements.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 114 - 119
Zusammenfassung
Abstract
Panthenol is a biologically active compound closely related to vitamin B5 (pantothenic acid). This work deals with the separation of panthenol enantiomers using high performance liquid chromatography. Different types of chiral stationary phases (β-cyclodextrin, isopropyl carbamate cyclofructan 6, amylose tris(3,5-dimethylphenylcarbamate)) were tested in normal phase separation mode. Effect of mobile phase composition on the resolution and retention of enantiomers was studied. Two types of detectors, low-wavelength UV and polarimetric, were used. The optimal chromatographic system includes a chiral stationary phase based on amylose and a mobile phase of hexane/ethanol (60/40, v/v) where the resolution of enantiomers reached the value Rs = 2.49. Suitable chromatographic conditions were applied for the determination of panthenol enantiomers in samples of pharmaceutical preparations with the obtained recovery of more than 92 %. Linearity of the high performance liquid chromatography method with spectrophotometric detection was from 1.0 × 10−3 to 1.3 mg mL−1 (R2 = 0.998), with the limit of detection of 0.3 × 10−3 mg mL−1 for both enantiomers.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 120 - 133
Zusammenfassung
Abstract
A strategy for the design of new yttrium(III) tags consisting of sequences of naturally occurring amino acids is described. These tags are 4–6 amino acids in length and consist of aspartic and glutamic acids. The use of natural amino acids would allow these oligopeptides to be incorporated into recombinant proteins at the DNA level, enabling the protein to be Y(III)-labelled after protein isolation. This allows a radionuclide or heavy atom to be associated with the protein without the necessity of further synthetic modification. Suitable peptides able to chelate Y(III) in stable complexes were designed based on quantum-chemical calculations. The stability of complexes formed by these peptides was tested by isothermal titration calorimetry, giving dissociation constants in the micromolar range. The likely structure of the most tightly bound complex was inferred from a combination of NMR experiments and quantum-chemical calculations. This structure will serve as the basis for future optimizations.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 134 - 140
Zusammenfassung
Abstract
In this work, drying of tomato slices was studied in a laboratory scale batch dryer working at conditions specific for geographical locations with low ambient pressure and low relative humidity of air. Tomato is a perishable farm product with high moisture content. Despite their high value, tomatoes are subjected to wastage and spoilage during their seasonal period; to last longer after harvested, they need to be treated by drying. Drying is one of the most widely used methods of tomato preserving for a longer period of time. This study involves experimental work on tomatoes drying in a tray laboratory batch dryer with the dimensions of (490 × 330 × 310) mm, a load cell-force sensor (range: 0–5 kg), fan (speed: 0–2500 rpm), air flow sensor (0–150 l/min) and a temperature and humidity monitoring system. This study was aimed at the development of a suitable drying method for the production of dehydrated agricultural products under specific air properties and climate conditions such as low ambient pressure and low relative humidity. During the experiment, the average ambient pressure was 82 kPa, and the average relative humidity of air was 20 %. Drying characteristics of tomato slices were determined at three temperature levels, namely: 50 °C, 60 °C and 70 °C,and three air flow rates: 30 l/s, 40 l/s and 50 l/s, for each temperature level. In this study, the effect of temperature, air flow rate, and ambient conditions on the drying rate of tomato slices were studied. The results indicate that during the experiments, tomatoes were dried to the final moisture content of 32.2 % from 92 %. Drying time at 50 °C, 60 °C and 70°C, and air flow of 30 l/s was 17.80 h, 15.80 h, and 14.08 h, respectively. For the air flow rate of 40 l/s, the drying time was 15.0 h, 12.9 h and 11.7 h and for the air flow rate of 50 l/s, the drying time of tomato slices was 14.0 h, 11.6 h and 10.2 h, respectively.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 141 - 146
Zusammenfassung
Abstract
This paper deals with the analysis and design of a model predictive control (MPC) strategy used in connection with level control in conically shaped industrial liquid storage tanks. The MPC is based on a non-linear dynamic model describing changes of the liquid level concerning changes in the inlet flow of the liquid. Euler discretization of the dynamic system was applied to transform con-tinuous time dynamics to its discrete-time counterpart used in non-linear MPC (NMPC) design. By means of a simulation case study, NMPC has been shown to track the changes of the liquid level, hence provides increased control performance. This paper also compares the traditional approach of optimal control, linear MPC, with the NMPC strategy.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 147 - 156
Zusammenfassung
Abstract
The aim of the research was the study of aluminium-magnesium hydrotalcite by FTIR analysis and detection of differences in structure due to calcination. Three types of samples were analysed. In the first two samples, cobalt was added into the structure and the third sample contained nickel and zinc. Hydrotalcite was prepared by one of the most common methods of hydrotalcite preparation, co-precipitation. After preparation, the samples were calcined at temperatures from 150 °C to 750 °C. Samples were compared in terms of calcination temperature; but in case of samples containing cobalt, two samples to each other. The most significant changes were noticed in the 500–700 cm−1 region, where a spinel structure was formed at higher calcination temperatures.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 157 - 162
Zusammenfassung
Abstract
Thermal inactivation of immobilized glucose isomerase in a concentrated glucose solution was investigated in the batch mode and temperature range of 83–95 °C, which is substantially higher than the temperature used in the industrial production of high-fructose corn syrup. Simultaneous evaluation of all inactivation data showed that first-order kinetics with the Arrhenius temperature dependence of the rate constant provided a good approximation of the biocatalyst stability under the investigated conditions. The model parameters were then used to predict the operational temperature for this biocatalyst in the production of high-fructose corn syrup based on the set operational life-time of the biocatalyst. The simulation predicted a window of operational temperature of 60–65 °C, which corresponds very well with the industrial applications of this biocatalyst. This observation demonstrates that the multi-temperature method of enzyme inactivation can provide a good estimate of biocatalyst process stability and is thus a useful tool in the development of biocatalytic processes.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 163 - 169
Zusammenfassung
Abstract
Leaves of the plant Plantago lanceolata contain many economically interesting bioactive compounds, among them aucubin and catalpol are the most attractive. However, soluble saccharides passing to water extracts during isolation complicate chromatographic purification of these compounds. Their degradation by microbial cells transforming, for example, glucose, fructose, or sucrose to ethanol could bring important production costs savings and improved final product quality. It has been shown that the best saccharide degradation in extracts is achieved with the Saccharomyces cerevisiae cells. The cells were very active also in their immobilized form and they were able to completely remove glucose from the extract within four hours in a packed bed reactor combined with a stirring system with infinite medium recirculation.
A simple mathematical model involving reaction kinetics and mass transfer limitations in the cell particles was proposed for the evaluation of cell effectiveness in their immobilized form in term of effectiveness factor. Values of the effectiveness factor calculated from the model were far below 1, indicating strong mass transfer limitations of the reaction. The model is suitable for optimization of preparation of immobilized cell particles, mainly from the point of view of cell charge in particles.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 170 - 174
Zusammenfassung
Abstract
Thermal inactivation of a commercial β-galactosidase from Aspergillus oryzae in a 300 g/L lactose solution was studied in the temperature range of 65–75 °C. Lactose exhibited a stabilisation effect when similar inactivation rates as those in lactose solution were observed in a lactose-free solution at temperatures lower by 5°C. Inactivation process in the lactose solution was biphasic. A kinetic model based on the Lumry-Eyring mechanism was proposed and successfully verified. Estimated activation energy values were very different. Rather high activation energy values of the forward reactions were responsible for both the significant change of rate constants and the rate-controlling reaction with temperature. For these two reasons, an increase of the operational lifetime of the enzyme from 7 days at 60 °C to 580 days at 55 °C was predicted.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 175 - 181
Zusammenfassung
Abstract
This paper presents a fast way of implementing nonlinear model predictive control (NMPC) using the random shooting approach. Instead of calculating the optimal control sequence by solving the NMPC problem as a nonlinear programming (NLP) problem, which is time consuming, a sub-optimal, but feasible, sequence of control inputs is determined randomly. To minimize the induced sub-optimality, numerous random control sequences are selected and the one that yields the smallest cost is selected. By means of a motivating case study we demonstrate that the random shooting-based approach is superior, from a computational point of view, to state-of-the-art NLP solvers, and features a low level of sub-optimality. The case study involves a continuous stirred tank reactor where a fast multi-component chemical reaction takes place.
Online veröffentlicht: 19 Dec 2018 Seitenbereich: 182 - 188
Zusammenfassung
Abstract
A summary of the preparation methods of 2 tautomeric and 4 N-methylated benzimidazoles with a nitro group on the benzene ring (1–6) and with an amino group in the same positions (7–12) were summarized. Annular tautomerism of the title compounds 1–12 has been studied using 1H, 13C and 15N NMR spectra in liquid and solid state (CPMAS), UV spectra and quantum chemical calculations.
A systematic theoretical study using density functional theory is presented to estimate the structural, electronic, and charge-transfer characteristics of a symmetric fluorination of acenequinones outer rings. The change in aromaticity of model derivatives was described by different types of aromaticity indices. By considering a hopping mechanism and using the Marcus theory in combination with the Einstein-Smoluchowski relation, electronic drift mobilities were predicted for selected dimer configurations obtained from X-ray structures of anthraquinone, 6,13-pentacenequinone and its octafluorinated derivatives. The analysis of obtained data showed that the fluorination of the outer rings of acenequinones can lower the energy of the lowest unoccupied molecular orbital to the range from −3.0 to −4.0 eV, i.e. typical for organic n-type semiconducting materials. Finally, potential electric semiconductivity of available X-ray structures relating to drift mobilities was discussed.
The title compound, C14H20INO, is a molecule with three stereogenic centres. It absolute configuration was derived from the synthesis and confirmed by structure determination (AD, Flack (Parsons’) parameter: 0.031 (8)). The expected stereochemistry of atoms N1 was confirmed to be S, C5 was confirmed to S, C6 was confirmed to R. The central N-heterocyclic ring is not planar and adopts a half-chair conformation. A calculation of least-squares planes showed that these rings are puckered in such a manner that the five atoms: C5, C6, C7, C12 and C13 (the second ring: C1, C2, C3, C4, C5 and N1) are planar, while atom N1 is displaced from these plane with the out-of-plane displacement of −0.694 (4) and −0.670 (5) Å in the second ring, respectively. Dihedral angle between the planes of the central N-heterocyclic rings is 23.4 (2)°. Crystal structure is also stabilized by C—H···O hydrogen interactions.
Zinc chloride is a commonly used activator in chemical activation of activated carbon. Various carbonaceous materials have been studied as potential source of activated carbon. The operating conditions are manipulated with attention to improve the properties and performance of activated carbon in the adsorption of water pollutants. However, the generalized attributes of zinc chloride activation in relation to the adsorptive performance of activated carbon are not well documented in much of published literature. Therefore, the present work is aimed to highlight the activation strategies and mechanisms of zinc chloride activation of activated carbon. The roles of impregnation ratio, period of activation and temperature are discussed to offer some insight into textural characteristics of activated carbon. The case studies on methylene blue adsorption are integrated to shed light on the external factors affecting the adsorption.
Arsenic (As) is metalloid, naturally present in the environment but also introduced by human activities. It is toxic and carcinogenic and its exposure to low or high concentrations can be fatal to human health. Arsenic contamination in drinking water threatens more than 150 million peoples all over the world. Therefore, treatment of As contaminated water is of unquestionable importance. The present review begins with an overview of As chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. The most common As removal processes (chemical precipitation, adsorption, ion exchange, membrane filtration, phytoremediation and electrocoagulation) are presented with discussion of their advantages, drawbacks and the main recent achievements.
Panthenol is a biologically active compound closely related to vitamin B5 (pantothenic acid). This work deals with the separation of panthenol enantiomers using high performance liquid chromatography. Different types of chiral stationary phases (β-cyclodextrin, isopropyl carbamate cyclofructan 6, amylose tris(3,5-dimethylphenylcarbamate)) were tested in normal phase separation mode. Effect of mobile phase composition on the resolution and retention of enantiomers was studied. Two types of detectors, low-wavelength UV and polarimetric, were used. The optimal chromatographic system includes a chiral stationary phase based on amylose and a mobile phase of hexane/ethanol (60/40, v/v) where the resolution of enantiomers reached the value Rs = 2.49. Suitable chromatographic conditions were applied for the determination of panthenol enantiomers in samples of pharmaceutical preparations with the obtained recovery of more than 92 %. Linearity of the high performance liquid chromatography method with spectrophotometric detection was from 1.0 × 10−3 to 1.3 mg mL−1 (R2 = 0.998), with the limit of detection of 0.3 × 10−3 mg mL−1 for both enantiomers.
A strategy for the design of new yttrium(III) tags consisting of sequences of naturally occurring amino acids is described. These tags are 4–6 amino acids in length and consist of aspartic and glutamic acids. The use of natural amino acids would allow these oligopeptides to be incorporated into recombinant proteins at the DNA level, enabling the protein to be Y(III)-labelled after protein isolation. This allows a radionuclide or heavy atom to be associated with the protein without the necessity of further synthetic modification. Suitable peptides able to chelate Y(III) in stable complexes were designed based on quantum-chemical calculations. The stability of complexes formed by these peptides was tested by isothermal titration calorimetry, giving dissociation constants in the micromolar range. The likely structure of the most tightly bound complex was inferred from a combination of NMR experiments and quantum-chemical calculations. This structure will serve as the basis for future optimizations.
In this work, drying of tomato slices was studied in a laboratory scale batch dryer working at conditions specific for geographical locations with low ambient pressure and low relative humidity of air. Tomato is a perishable farm product with high moisture content. Despite their high value, tomatoes are subjected to wastage and spoilage during their seasonal period; to last longer after harvested, they need to be treated by drying. Drying is one of the most widely used methods of tomato preserving for a longer period of time. This study involves experimental work on tomatoes drying in a tray laboratory batch dryer with the dimensions of (490 × 330 × 310) mm, a load cell-force sensor (range: 0–5 kg), fan (speed: 0–2500 rpm), air flow sensor (0–150 l/min) and a temperature and humidity monitoring system. This study was aimed at the development of a suitable drying method for the production of dehydrated agricultural products under specific air properties and climate conditions such as low ambient pressure and low relative humidity. During the experiment, the average ambient pressure was 82 kPa, and the average relative humidity of air was 20 %. Drying characteristics of tomato slices were determined at three temperature levels, namely: 50 °C, 60 °C and 70 °C,and three air flow rates: 30 l/s, 40 l/s and 50 l/s, for each temperature level. In this study, the effect of temperature, air flow rate, and ambient conditions on the drying rate of tomato slices were studied. The results indicate that during the experiments, tomatoes were dried to the final moisture content of 32.2 % from 92 %. Drying time at 50 °C, 60 °C and 70°C, and air flow of 30 l/s was 17.80 h, 15.80 h, and 14.08 h, respectively. For the air flow rate of 40 l/s, the drying time was 15.0 h, 12.9 h and 11.7 h and for the air flow rate of 50 l/s, the drying time of tomato slices was 14.0 h, 11.6 h and 10.2 h, respectively.
This paper deals with the analysis and design of a model predictive control (MPC) strategy used in connection with level control in conically shaped industrial liquid storage tanks. The MPC is based on a non-linear dynamic model describing changes of the liquid level concerning changes in the inlet flow of the liquid. Euler discretization of the dynamic system was applied to transform con-tinuous time dynamics to its discrete-time counterpart used in non-linear MPC (NMPC) design. By means of a simulation case study, NMPC has been shown to track the changes of the liquid level, hence provides increased control performance. This paper also compares the traditional approach of optimal control, linear MPC, with the NMPC strategy.
The aim of the research was the study of aluminium-magnesium hydrotalcite by FTIR analysis and detection of differences in structure due to calcination. Three types of samples were analysed. In the first two samples, cobalt was added into the structure and the third sample contained nickel and zinc. Hydrotalcite was prepared by one of the most common methods of hydrotalcite preparation, co-precipitation. After preparation, the samples were calcined at temperatures from 150 °C to 750 °C. Samples were compared in terms of calcination temperature; but in case of samples containing cobalt, two samples to each other. The most significant changes were noticed in the 500–700 cm−1 region, where a spinel structure was formed at higher calcination temperatures.
Thermal inactivation of immobilized glucose isomerase in a concentrated glucose solution was investigated in the batch mode and temperature range of 83–95 °C, which is substantially higher than the temperature used in the industrial production of high-fructose corn syrup. Simultaneous evaluation of all inactivation data showed that first-order kinetics with the Arrhenius temperature dependence of the rate constant provided a good approximation of the biocatalyst stability under the investigated conditions. The model parameters were then used to predict the operational temperature for this biocatalyst in the production of high-fructose corn syrup based on the set operational life-time of the biocatalyst. The simulation predicted a window of operational temperature of 60–65 °C, which corresponds very well with the industrial applications of this biocatalyst. This observation demonstrates that the multi-temperature method of enzyme inactivation can provide a good estimate of biocatalyst process stability and is thus a useful tool in the development of biocatalytic processes.
Leaves of the plant Plantago lanceolata contain many economically interesting bioactive compounds, among them aucubin and catalpol are the most attractive. However, soluble saccharides passing to water extracts during isolation complicate chromatographic purification of these compounds. Their degradation by microbial cells transforming, for example, glucose, fructose, or sucrose to ethanol could bring important production costs savings and improved final product quality. It has been shown that the best saccharide degradation in extracts is achieved with the Saccharomyces cerevisiae cells. The cells were very active also in their immobilized form and they were able to completely remove glucose from the extract within four hours in a packed bed reactor combined with a stirring system with infinite medium recirculation.
A simple mathematical model involving reaction kinetics and mass transfer limitations in the cell particles was proposed for the evaluation of cell effectiveness in their immobilized form in term of effectiveness factor. Values of the effectiveness factor calculated from the model were far below 1, indicating strong mass transfer limitations of the reaction. The model is suitable for optimization of preparation of immobilized cell particles, mainly from the point of view of cell charge in particles.
Thermal inactivation of a commercial β-galactosidase from Aspergillus oryzae in a 300 g/L lactose solution was studied in the temperature range of 65–75 °C. Lactose exhibited a stabilisation effect when similar inactivation rates as those in lactose solution were observed in a lactose-free solution at temperatures lower by 5°C. Inactivation process in the lactose solution was biphasic. A kinetic model based on the Lumry-Eyring mechanism was proposed and successfully verified. Estimated activation energy values were very different. Rather high activation energy values of the forward reactions were responsible for both the significant change of rate constants and the rate-controlling reaction with temperature. For these two reasons, an increase of the operational lifetime of the enzyme from 7 days at 60 °C to 580 days at 55 °C was predicted.
This paper presents a fast way of implementing nonlinear model predictive control (NMPC) using the random shooting approach. Instead of calculating the optimal control sequence by solving the NMPC problem as a nonlinear programming (NLP) problem, which is time consuming, a sub-optimal, but feasible, sequence of control inputs is determined randomly. To minimize the induced sub-optimality, numerous random control sequences are selected and the one that yields the smallest cost is selected. By means of a motivating case study we demonstrate that the random shooting-based approach is superior, from a computational point of view, to state-of-the-art NLP solvers, and features a low level of sub-optimality. The case study involves a continuous stirred tank reactor where a fast multi-component chemical reaction takes place.
A summary of the preparation methods of 2 tautomeric and 4 N-methylated benzimidazoles with a nitro group on the benzene ring (1–6) and with an amino group in the same positions (7–12) were summarized. Annular tautomerism of the title compounds 1–12 has been studied using 1H, 13C and 15N NMR spectra in liquid and solid state (CPMAS), UV spectra and quantum chemical calculations.