1. bookVolumen 32 (2022): Heft 2 (June 2022)
    Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-8492
Erstveröffentlichung
05 Apr 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Revisiting Strategies for Fitting Logistic Regression for Positive and Unlabeled Data

Online veröffentlicht: 04 Jul 2022
Volumen & Heft: Volumen 32 (2022) - Heft 2 (June 2022) - Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Seitenbereich: 299 - 309
Eingereicht: 05 Nov 2021
Akzeptiert: 10 Feb 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-8492
Erstveröffentlichung
05 Apr 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Bahorik, A.L., Newhill, C.E., Queen, C.C. and Eack, S.M. (2014). Under-reporting of drug use among individuals with schizophrenia: Prevalence and predictors, Psychological Medicine 44(12): 61–69, DOI: 10.1017/S0033291713000548.23551851 DOI öffnenSearch in Google Scholar

Bekker, J. and Davis, J. (2018). Estimating the class prior in positive and unlabeled data through decision tree induction, Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, USA 32(1): 2712–2719.10.1609/aaai.v32i1.11715 Search in Google Scholar

Bekker, J. and Davis, J. (2020). Learning from positive and unlabeled data: A survey, Machine Learning 109(4): 719–760, DOI: 10.1007/s10994-020-05877-5. DOI öffnenSearch in Google Scholar

Bekker, J., Robberechts, P. and Davis, J. (2019). Beyond the selected completely at random assumption for learning from positive and unlabeled data, in U. Brefeld et al. (Eds), Proceedings of the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Springer, Cham, pp. 71–85, DOI: 10.1007/978-3-030-46147-8_5. DOI öffnenSearch in Google Scholar

Cover, T. and Thomas, J. (1991). Elements of Information Theory, Wiley, New York, DOI: 10.1002/047174882X. DOI öffnenSearch in Google Scholar

Elkan, C. and Noto, K. (2008). Learning classifiers from only positive and unlabeled data, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, USA, pp. 213–220, DOI: 10.1145/1401890.1401920. DOI öffnenSearch in Google Scholar

Łazęcka, M., Mielniczuk, J. and Teisseyre, P. (2021). Estimating the class prior for positive and unlabelled data via logistic regression, Advances in Data Analysis and Classification 15(4): 1039–1068, DOI: 10.1007/s11634-021-00444-9. DOI öffnenSearch in Google Scholar

Lipp, T. and Boyd, S. (2016). Variations and extension of the convex-concave procedure, Optimization and Engineering 17(2): 263–287, DOI: 10.1007/s11081-015-9294-x. DOI öffnenSearch in Google Scholar

Liu, B., Dai, Y., Li, X., Lee, W.S. and Yu, P.S. (2003). Building text classifiers using positive and unlabeled examples, Proceedings of the 3rd IEEE International Conference on Data Mining, ICDM’03, Melbourne, USA, pp. 179–186, DOI: 10.1109/ICDM.2003.1250918. DOI öffnenSearch in Google Scholar

Na, B., Kim, H., Song, K., Joo, W., Kim, Y.-Y. and Moon, I.-C. (2020). Deep generative positive-unlabeled learning under selection bias, Proceedings of the 29th ACM International Conference on Information and Knowledge Management, CIKM’20, Ireland, pp. 1155–1164, DOI: 10.1145/3340531.3411971, (virtual event). DOI öffnenSearch in Google Scholar

Scott, B., Blanchard, G. and Handy, G. (2013). Classification with asymetric label noise: Consistency and maximal denoising, Proceedings of Machine Learning Research 30(2013): 1–23. Search in Google Scholar

Sechidis, K., Sperrin, M., Petherick, E.S., Luján, M. and Brown, G. (2017). Dealing with under-reported variables: An information theoretic solution, International Journal of Approximate Reasoning 85(1): 159–177, DOI: 10.1016/j.ijar.2017.04.002. DOI öffnenSearch in Google Scholar

Shen, X., Diamond, S., Gu, Y. and Boyd, S. (2016). Disciplined convex-concave programming, Proceedings of 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, USA, pp. 1009–1014, DOI: 10.1109/CDC.2016.7798400. DOI öffnenSearch in Google Scholar

Teisseyre, P., Mielniczuk, J. and Łazęcka, M. (2020). Different strategies of fitting logistic regression for positive and unlabelled data, in V.V. Krzhizhanovskaya et al. (Eds), Proceedings of the International Conference on Computational Science ICCS’20, Springer International Publishing, Cham, pp. 3–17, DOI: 10.1007/978-3-030-50423-6_1. DOI öffnenSearch in Google Scholar

Ward, G., Hastie, T., Barry, S., Elith, J. and Leathwick, J. (2009). Presence-only data and the EM algorithm, Biometrics 65(2): 554–563, DOI: 10.1111/j.1541-0420.2008.01116.x.482188618759851 DOI öffnenSearch in Google Scholar

Yang, P., Li, X., Chua, H., Kwoh, C. and Ng, S. (2014). Ensemble positive unlabeled learning for disease gene identification, PLOS ONE 9(5): 1–11, DOI: 10.1371/journal.pone.0097079.401624124816822 DOI öffnenSearch in Google Scholar

Yuille, A. and Rangarajan, A. (2003). The concave-convex procedure, Neural Computation 15(4): 915–936, DOI: 10.1162/08997660360581958.12689392 DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD