Uneingeschränkter Zugang

Control Effect and Mechanism of Trichoderma asperellum TM11 against Blueberry Root Rot


Zitieren

Abdelhai MH, Awad FN, Yang Q, Mahunu GK, Godana EA, Zhang H. Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism. Biol Control. 2019 Dec;139:104079. https://doi.org/10.1016/j.biocontrol.2019.104079 AbdelhaiMH AwadFN YangQ MahunuGK GodanaEA ZhangH Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism Biol Control 2019 Dec 139 104079 https://doi.org/10.1016/j.biocontrol.2019.104079 Search in Google Scholar

Abdel-Kader M, El-Mougy N, Lashin S. Essential oils and Trichoderma harzianum as an integrated control measure against faba bean root rot pathogens. J Plant Prot Res. 2011 Jul;51(3):306–313. https://doi.org/10.2478/v10045-011-0050-8 Abdel-KaderM El-MougyN LashinS Essential oils and Trichoderma harzianum as an integrated control measure against faba bean root rot pathogens J Plant Prot Res 2011 Jul 51 3 306 313 https://doi.org/10.2478/v10045-011-0050-8 Search in Google Scholar

Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 2017 Dec;7(1):54. https://doi.org/10.1186/s13568-017-0351-z AhsanT ChenJ ZhaoX IrfanM WuY Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf AMB Express 2017 Dec 7 1 54 https://doi.org/10.1186/s13568-017-0351-z Search in Google Scholar

Al-Askar AA, Saber WIA, Ghoneem KM, Hafez EE, Ibrahim AA. Crude citric acid of Trichoderma asperellum: tomato growth promotor and suppressor of Fusarium oxysporum f. sp. lycopersici. Plants. 2021 Jan;10(2):222. https://doi.org/10.3390/plants10020222 Al-AskarAA SaberWIA GhoneemKM HafezEE IbrahimAA Crude citric acid of Trichoderma asperellum: tomato growth promotor and suppressor of Fusarium oxysporum f. sp. lycopersici Plants 2021 Jan 10 2 222 https://doi.org/10.3390/plants10020222 Search in Google Scholar

Arai M, Han C, Yamano Y, Setiawan A, Kobayashi M. Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. J Nat Med. 2014 Apr;68(2):372–376. https://doi.org/10.1007/s11418-013-0811-y AraiM HanC YamanoY SetiawanA KobayashiM Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances J Nat Med 2014 Apr 68 2 372 376 https://doi.org/10.1007/s11418-013-0811-y Search in Google Scholar

Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot. 2009 Jul;60(11):3279–3295. https://doi.org/10.1093/jxb/erp165 BaeH SicherRC KimMS KimSH StremMD MelnickRL BaileyBA The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao J Exp Bot 2009 Jul 60 11 3279 3295 https://doi.org/10.1093/jxb/erp165 Search in Google Scholar

Bae SJ, Park YH, Bae HJ, Jeon J, Bae H. Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp. J Microbiol Biotechnol. 2017 Jun;27(6):1157–1162. https://doi.org/10.4014/jmb.1702.02063 BaeSJ ParkYH BaeHJ JeonJ BaeH Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp J Microbiol Biotechnol 2017 Jun 27 6 1157 1162 https://doi.org/10.4014/jmb.1702.02063 Search in Google Scholar

Bañados MP. Blueberry production in South America. Acta Hortic. 2006;715:165–172 https://doi.org/10.17660/ActaHortic.2006.715.24 BañadosMP Blueberry production in South America Acta Hortic 2006 715 165 17 https://doi.org/10.17660/ActaHortic.2006.715.24 Search in Google Scholar

Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A. Trichoderma pubescens elicit induced systemic resistance in tomato challenged by Rhizoctonia solani. J Fungi (Basel). 2023 Jan 27;9(2):167. https://doi.org/10.3390/jof9020167 BehiryS SolimanSA MassoudMA AbdelbaryM KordyAM AbdelkhalekA HeflishA Trichoderma pubescens elicit induced systemic resistance in tomato challenged by Rhizoctonia solani J Fungi (Basel) 2023 Jan 27 9 2 167 https://doi.org/10.3390/jof9020167 Search in Google Scholar

Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004 Dec;7(4):249–260. BenítezT RincónAM LimónMC CodónAC Biocontrol mechanisms of Trichoderma strains Int Microbiol 2004 Dec 7 4 249 260 Search in Google Scholar

Bhutia DD, Zhimo Y, Kole R, Saha J. Antifungal activity of plant extracts against Colletotrichum musae, the post harvest anthracnose pathogen of banana cv. Martaman. Nutr Food Sci. 2016 Feb;46(1):2–15. https://doi.org/10.1108/NFS-06-2015-0068 BhutiaDD ZhimoY KoleR SahaJ Antifungal activity of plant extracts against Colletotrichum musae, the post harvest anthracnose pathogen of banana cv. Martaman Nutr Food Sci 2016 Feb 46 1 2 15 https://doi.org/10.1108/NFS-06-2015-0068 Search in Google Scholar

Bigirimana J, De Meyer G, Poppe J, Elad Y, Höfte M. Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harziamum. Meded – Fac Landbouwkd Toegepaste Biol Wet (Univ Gent). 1997;62:1001–1007. BigirimanaJ De MeyerG PoppeJ EladY HöfteM Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harziamum Meded – Fac Landbouwkd Toegepaste Biol Wet (Univ Gent) 1997 62 1001 1007 Search in Google Scholar

Calonje M, Novaes-Ledieu M, Bernardo D, Ahrazem O, Mendoza CG. Chemical components and their locations in the Verticillium fungicola cell wall. Can J Microbiol. 2000 Feb;46(2):101–109. https://doi.org/10.1139/w99-120 CalonjeM Novaes-LedieuM BernardoD AhrazemO MendozaCG Chemical components and their locations in the Verticillium fungicola cell wall Can J Microbiol 2000 Feb 46 2 101 109 https://doi.org/10.1139/w99-120 Search in Google Scholar

Chet I, Inbar J. Biological control of fungal pathogens. Appl Biochem Biotechnol. 1994 Jul;48(1):37–43. https://doi.org/10.1007/BF02825358 ChetI InbarJ Biological control of fungal pathogens Appl Biochem Biotechnol 1994 Jul 48 1 37 43 https://doi.org/10.1007/BF02825358 Search in Google Scholar

Chong KP, Rossall S, Atong M. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. J Agric Sci. 2009;1(2):15. https://doi.org/10.5539/jas.v1n2p15 ChongKP RossallS AtongM In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense J Agric Sci 2009 1 2 15 https://doi.org/10.5539/jas.v1n2p15 Search in Google Scholar

da Silva JAT, de Medeiros EV, da Silva JM, Tenório DA, Moreira KA, Nascimento TCES, Souza-Motta C. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are Biocontrol agents that act against cassava root rot through different Mechanisms. J Phytopathol. 2016 Dec;164(11–12):1003–1011. https://doi.org/10.1111/jph.12521 da SilvaJAT de MedeirosEV da SilvaJM TenórioDA MoreiraKA NascimentoTCES Souza-MottaC Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are Biocontrol agents that act against cassava root rot through different Mechanisms J Phytopathol 2016 Dec 164 11–12 1003 1011 https://doi.org/10.1111/jph.12521 Search in Google Scholar

de França SKS, Cardoso AF, Lustosa DC, Ramos EMLS, de Filippi MCC, da Silva GB. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev. 2015 Jan;35(1):317–324. https://doi.org/10.1007/s13593-014-0244-3 de FrançaSKS CardosoAF LustosaDC RamosEMLS de FilippiMCC da SilvaGB Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice Agron Sustain Dev 2015 Jan 35 1 317 324 https://doi.org/10.1007/s13593-014-0244-3 Search in Google Scholar

de los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA, Délano-Frier JP, de-Folter S, Sánchez-García P, Peña-Cabriales JJ. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol Control. 2013 Jan;64(1):37–44. https://doi.org/10.1016/j.biocontrol.2012.10.006 de los Santos-VillalobosS Guzmán-OrtizDA Gómez-LimMA Délano-FrierJP de-FolterS Sánchez-GarcíaP Peña-CabrialesJJ Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.) Biol Control 2013 Jan 64 1 37 44 https://doi.org/10.1016/j.biocontrol.2012.10.006 Search in Google Scholar

Dihazi A, Jaiti F, WafaTaktak, kilani-Feki O, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini MA. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiol Biochem. 2012 Jun; 55:7–15. https://doi.org/10.1016/j.plaphy.2012.03.003 DihaziA JaitiF TaktakWafa kilani-FekiO JaouaS DriouichA BaazizM DaayfF SerghiniMA Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings Plant Physiol Biochem 2012 Jun 55 7 15 https://doi.org/10.1016/j.plaphy.2012.03.003 Search in Google Scholar

El Komy MH, Saleh AA, Eranthodi A, Molan YY. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol J. 2015 Mar; 31(1):50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087 El KomyMH SalehAA EranthodiA MolanYY Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt Plant Pathol J 2015 Mar 31 1 50 60 https://doi.org/10.5423/PPJ.OA.09.2014.0087 Search in Google Scholar

Elshahawy IE, El-Mohamedy RS. Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. J Plant Pathol. 2019 Aug; 101(3):597–608. https://doi.org/10.1007/s42161-019-00248-z ElshahawyIE El-MohamedyRS Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination J Plant Pathol 2019 Aug 101 3 597 608 https://doi.org/10.1007/s42161-019-00248-z Search in Google Scholar

Faria A, Oliveira J, Neves P, Gameiro P, Santos-Buelga C, de Freitas V, Mateus N. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J Agric Food Chem. 2005 Aug; 53(17):6896–6902. https://doi.org/10.1021/jf0511300 FariaA OliveiraJ NevesP GameiroP Santos-BuelgaC de FreitasV MateusN Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts J Agric Food Chem 2005 Aug 53 17 6896 6902 https://doi.org/10.1021/jf0511300 Search in Google Scholar

Fei NY, Qi YB, Meng TT, Fu JF, Yan XR. First report of root rot caused by Calonectria ilicicola on blueberry in Yunnan Province, China. Plant Dis. 2018 May;102(5):1036–1036. https://doi.org/10.1094/PDIS-09-17-1337-PDN FeiNY QiYB MengTT FuJF YanXR First report of root rot caused by Calonectria ilicicola on blueberry in Yunnan Province, China Plant Dis 2018 May 102 5 1036 1036 https://doi.org/10.1094/PDIS-09-17-1337-PDN Search in Google Scholar

Guo R, Wang Z, Zhou C, Huang Y, Fan H, Wang Y, Liu Z. Biocontrol potential of Trichoderma asperellum mutants T39 and T45 and their growth promotion of poplar seedlings. J For Res. 2020 Jun; 31(3):1035–1043. https://doi.org/10.1007/s11676-018-0797-0 GuoR WangZ ZhouC HuangY FanH WangY LiuZ Biocontrol potential of Trichoderma asperellum mutants T39 and T45 and their growth promotion of poplar seedlings J For Res 2020 Jun 31 3 1035 1043 https://doi.org/10.1007/s11676-018-0797-0 Search in Google Scholar

Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol. 2014 Oct;7(4): 133–141. https://doi.org/10.1007/s12154-014-0113-1 HahnM The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study J Chem Biol 2014 Oct 7 4 133 141 https://doi.org/10.1007/s12154-014-0113-1 Search in Google Scholar

Haran S, Schickler H, Chet I. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology. 1996 Sep;142(9):2321–2331. https://doi.org/10.1099/00221287-142-9-2321 HaranS SchicklerH ChetI Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum Microbiology 1996 Sep 142 9 2321 2331 https://doi.org/10.1099/00221287-142-9-2321 Search in Google Scholar

Harman GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006 Feb;96(2):190–194. https://doi.org/10.1094/PHYTO-96-0190 HarmanGE Overview of mechanisms and uses of Trichoderma spp Phytopathology 2006 Feb 96 2 190 194 https://doi.org/10.1094/PHYTO-96-0190 Search in Google Scholar

He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation: Mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol. 2020 Jan;40(1):31–45. https://doi.org/10.1080/07388551.2019.1675582 HeW MegharajM WuCY SubashchandraboseSR DaiCC Endophyte-assisted phytoremediation: Mechanisms and current application strategies for soil mixed pollutants Crit Rev Biotechnol 2020 Jan 40 1 31 45 https://doi.org/10.1080/07388551.2019.1675582 Search in Google Scholar

Herrera Cano N, Ballari MS, López AG, Santiago AN. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J Agric Food Chem. 2015 Apr;63(14):3681–3686. https://doi.org/10.1021/acs.jafc.5b00150 Herrera CanoN BallariMS LópezAG SantiagoAN New synthesis and biological evaluation of benzothiazole derivates as antifungal agents J Agric Food Chem 2015 Apr 63 14 3681 3686 https://doi.org/10.1021/acs.jafc.5b00150 Search in Google Scholar

Jiang H, Zhang L, Zhang J, Ojaghian MR, Hyde KD. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J Zhejiang Univ Sci B. 2016 Apr;17(4):271–281. https://doi.org/10.1631/jzus.B1500243 JiangH ZhangL ZhangJ OjaghianMR HydeKD Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro J Zhejiang Univ Sci B 2016 Apr 17 4 271 281 https://doi.org/10.1631/jzus.B1500243 Search in Google Scholar

Keswani C, Bisen K, Chitara MK, Sarma BK, Singh HB. Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. In Singh J, Seneviratne G, editors. Agro-environmental sustainability. Cham (Germany): Springer; 2017. p. 63–79. https://doi.org/10.1007/978-3-319-49724-2_4 KeswaniC BisenK ChitaraMK SarmaBK SinghHB Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens In SinghJ SeneviratneG editors. Agro-environmental sustainability Cham (Germany) Springer 2017 63 79 https://doi.org/10.1007/978-3-319-49724-2_4 Search in Google Scholar

Kong P, Hong C. Biocontrol of boxwood blight by Trichoderma koningiopsis Mb2. Crop Prot. 2017 Aug;98:124–127. https://doi.org/10.1016/j.cropro.2017.03.015 KongP HongC Biocontrol of boxwood blight by Trichoderma koningiopsis Mb2 Crop Prot 2017 Aug 98 124 127 https://doi.org/10.1016/j.cropro.2017.03.015 Search in Google Scholar

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016 Jul; 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054 KumarS StecherG TamuraK MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets Mol Biol Evol 2016 Jul 33 7 1870 1874 https://doi.org/10.1093/molbev/msw054 Search in Google Scholar

Li M, Ma G, Lian H, Su X, Tian Y, Huang W, Mei J, Jiang X. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology. J Integr Agric. 2019 Mar;18(3):607–617. https://doi.org/10.1016/S2095-3119(18)62057-X LiM MaG LianH SuX TianY HuangW MeiJ JiangX The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology J Integr Agric 2019 Mar 18 3 607 617 https://doi.org/10.1016/S2095-3119(18)62057-X Search in Google Scholar

Li S, Hou R, Zhang F, Shang X. First report of Fusarium commune causing root rot of blueberry plants in Guizhou Province, China. Plant Dis. 2023 Apr;107(4):1227. https://doi.org/10.1094/PDIS-06-22-1305-PDN LiS HouR ZhangF ShangX First report of Fusarium commune causing root rot of blueberry plants in Guizhou Province, China Plant Dis 2023 Apr 107 4 1227 https://doi.org/10.1094/PDIS-06-22-1305-PDN Search in Google Scholar

Liu YH, Lin T, Ye CS, Zhang CQ. First report of Fusarium wilt in blueberry (Vaccinium corymbosum) caused by Fusarium oxysporum in China. Plant Dis. 2014 Aug;98(8):1158–1158. https://doi.org/10.1094/PDIS-02-14-0167-PDN LiuYH LinT YeCS ZhangCQ First report of Fusarium wilt in blueberry (Vaccinium corymbosum) caused by Fusarium oxysporum in China Plant Dis 2014 Aug 98 8 1158 1158 https://doi.org/10.1094/PDIS-02-14-0167-PDN Search in Google Scholar

Loc NH, Huy ND, Quang HT, Lan TT, Thu Ha TT. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020 Jan 02;11(1):38–48. https://doi.org/10.1080/21501203.2019.1703839 LocNH HuyND QuangHT LanTT Thu HaTT Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34 Mycology 2020 Jan 02 11 1 38 48 https://doi.org/10.1080/21501203.2019.1703839 Search in Google Scholar

Mathivanan N, Prabavathy VR, Vijayanandraj VR. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In Karlovsky P, editor. Secondary metabolites. Soil ecology. Berlin, Heidelberg (Germany): Springer; 2008. p. 129–140. https://doi.org/10.1007/978-3-540-74543-3_7 MathivananN PrabavathyVR VijayanandrajVR The effect of fungal secondary metabolites on bacterial and fungal pathogens In KarlovskyP editor. Secondary metabolites. Soil ecology Berlin, Heidelberg (Germany) Springer 2008 129 140 https://doi.org/10.1007/978-3-540-74543-3_7 Search in Google Scholar

Meena M, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch Phytopathol Pflanzenschutz. 2017 Aug;50(13–14):629–648. https://doi.org/10.1080/03235408.2017.1357360 MeenaM SwapnilP ZehraA DubeyMK UpadhyayRS Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens Arch Phytopathol Pflanzenschutz 2017 Aug 50 13–14 629 648 https://doi.org/10.1080/03235408.2017.1357360 Search in Google Scholar

Mischke S. A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia. 1997;137(1):45–52. https://doi.org/10.1023/A:1006814521872 MischkeS A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi Mycopathologia 1997 137 1 45 52 https://doi.org/10.1023/A:1006814521872 Search in Google Scholar

Mu J, Li X, Jiao J, Ji G, Wu J, Hu F, Li H. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biol Control. 2017 Sep;112:49–54. https://doi.org/10.1016/j.biocontrol.2017.05.013 MuJ LiX JiaoJ JiG WuJ HuF LiH Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria Biol Control 2017 Sep 112 49 54 https://doi.org/10.1016/j.biocontrol.2017.05.013 Search in Google Scholar

Mukherjee PK, Raghu K. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139(3):151–155. https://doi.org/10.1023/A:1006868009184 MukherjeePK RaghuK Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii Mycopathologia 1997 139 3 151 155 https://doi.org/10.1023/A:1006868009184 Search in Google Scholar

Muniroh MS, Nusaibah SA, Vadamalai G, Siddique Y. Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Curr Plant Biol. 2019 Dec;20:100116. https://doi.org/10.1016/j.cpb.2019.100116 MunirohMS NusaibahSA VadamalaiG SiddiqueY Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings Curr Plant Biol 2019 Dec 20 100116 https://doi.org/10.1016/j.cpb.2019.100116 Search in Google Scholar

Nakkeeran S, Priyanka R, Rajamanickam S, Sivakumar U. Bacillus amyloliquefaciens alters the diversity of volatile and non-volatile metabolites and induces the expression of defence genes for the management of Botrytis leaf blight of Lilium under protected conditions. J Plant Pathol. 2020 Nov;102(4):1179–1189. https://doi.org/10.1007/s42161-020-00602-6 NakkeeranS PriyankaR RajamanickamS SivakumarU Bacillus amyloliquefaciens alters the diversity of volatile and non-volatile metabolites and induces the expression of defence genes for the management of Botrytis leaf blight of Lilium under protected conditions J Plant Pathol 2020 Nov 102 4 1179 1189 https://doi.org/10.1007/s42161-020-00602-6 Search in Google Scholar

Nawrocka J, Małolepsza U. Diversity in plant systemic resistance induced by Trichoderma. Biol Control. 2013 Nov;67(2):149–156. https://doi.org/10.1016/j.biocontrol.2013.07.005 NawrockaJ MałolepszaU Diversity in plant systemic resistance induced by Trichoderma Biol Control 2013 Nov 67 2 149 156 https://doi.org/10.1016/j.biocontrol.2013.07.005 Search in Google Scholar

Neto CC. Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res. 2007 Jun; 51(6):652–664. https://doi.org/10.1002/mnfr.200600279 NetoCC Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases Mol Nutr Food Res 2007 Jun 51 6 652 664 https://doi.org/10.1002/mnfr.200600279 Search in Google Scholar

Nguyen TTT, Lee HB. Isolation and characterization of three Zygomycetous fungi in Korea: Backusella circina, Circinella muscae, and Mucor ramosissimus. Mycobiology. 2018 Dec 21;46(4):317–327. https://doi.org/10.1080/12298093.2018.1538071 NguyenTTT LeeHB Isolation and characterization of three Zygomycetous fungi in Korea: Backusella circina, Circinella muscae, and Mucor ramosissimus Mycobiology 2018 Dec 21 46 4 317 327 https://doi.org/10.1080/12298093.2018.1538071 Search in Google Scholar

Papavizas GC, Lumsden RD. Biological control of soilborne fungal propagules. Annu Rev Phytopathol. 1980 Sep;18(1):389–413. https://doi.org/10.1146/annurev.py.18.090180.002133 PapavizasGC LumsdenRD Biological control of soilborne fungal propagules Annu Rev Phytopathol 1980 Sep 18 1 389 413 https://doi.org/10.1146/annurev.py.18.090180.002133 Search in Google Scholar

Podile AR, Laxmi VDV. Seed Bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of Fusarial Wilt in Pigeonpea. J Phytopathol. 1998 Jul;146(5–6):255–259. https://doi.org/10.1111/j.1439-0434.1998.tb04687.x PodileAR LaxmiVDV Seed Bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of Fusarial Wilt in Pigeonpea J Phytopathol 1998 Jul 146 5–6 255 259 https://doi.org/10.1111/j.1439-0434.1998.tb04687.x Search in Google Scholar

Ruangwong OU, Wonglom P, Suwannarach N, Kumla J, Thaochan N, Chomnunti P, Pitija K, Sunpapao A. Volatile organic compound from Trichoderma asperelloides TSU1: impact on plant pathogenic fungi. J Fungi. 2021 Mar;7(3):187. https://doi.org/10.3390/jof7030187 RuangwongOU WonglomP SuwannarachN KumlaJ ThaochanN ChomnuntiP PitijaK SunpapaoA Volatile organic compound from Trichoderma asperelloides TSU1: impact on plant pathogenic fungi J Fungi 2021 Mar 7 3 187 https://doi.org/10.3390/jof7030187 Search in Google Scholar

Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem. 2008 Aug;40(8):2016–2020. https://doi.org/10.1016/j.soilbio.2008.03.011 SahebaniN HadaviN Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum Soil Biol Biochem 2008 Aug 40 8 2016 2020 https://doi.org/10.1016/j.soilbio.2008.03.011 Search in Google Scholar

Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control. 2016 Mar;94:37–46. https://doi.org/10.1016/j.biocontrol.2015.12.001 SaravanakumarK YuC DouK WangM LiY ChenJ Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum Biol Control 2016 Mar 94 37 46 https://doi.org/10.1016/j.biocontrol.2015.12.001 Search in Google Scholar

Sid Ahmed A, Ezziyyani M, Pérez Sánchez C, Candela ME. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol. 2003;109(6):633–637. https://doi.org/10.1023/A:1024734216814 Sid AhmedA EzziyyaniM Pérez SánchezC CandelaME Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants Eur J Plant Pathol 2003 109 6 633 637 https://doi.org/10.1023/A:1024734216814 Search in Google Scholar

Sundar D, Perianayaguy B, Reddy AR. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves. Plant Growth Regul. 2004;44(2):157–163. https://doi.org/10.1023/B:GROW.0000049418.92833.d6 SundarD PerianayaguyB ReddyAR Localization of antioxidant enzymes in the cellular compartments of sorghum leaves Plant Growth Regul 2004 44 2 157 163 https://doi.org/10.1023/B:GROW.0000049418.92833.d6 Search in Google Scholar

Takahashi Y, Kubota T, Shibazaki A, Gonoi T, Fromont J, Kobayashi J. Nakijinamines C–E, new heteroaromatic alkaloids from the sponge Suberites species. Org Lett. 2011 Jun;13(12):3016–3019. https://doi.org/10.1021/ol2008473 TakahashiY KubotaT ShibazakiA GonoiT FromontJ KobayashiJ Nakijinamines C–E, new heteroaromatic alkaloids from the sponge Suberites species Org Lett 2011 Jun 13 12 3016 3019 https://doi.org/10.1021/ol2008473 Search in Google Scholar

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma-plant-pathogen interactions. Soil Biol Biochem. 2008 Jan;40(1):1–10. https://doi.org/10.1016/j.soilbio.2007.07.002 VinaleF SivasithamparamK GhisalbertiEL MarraR WooSL LoritoM Trichoderma-plant-pathogen interactions Soil Biol Biochem 2008 Jan 40 1 1 10 https://doi.org/10.1016/j.soilbio.2007.07.002 Search in Google Scholar

Wang LJ, Wu J, Wang HX, Li SS, Zheng XC, Du H, Xu YJ, Wang LS. Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. J Funct Foods. 2015 Jun; 16:295–304. https://doi.org/10.1016/j.jff.2015.04.027 WangLJ WuJ WangHX LiSS ZhengXC DuH XuYJ WangLS Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars J Funct Foods 2015 Jun 16 295 304 https://doi.org/10.1016/j.jff.2015.04.027 Search in Google Scholar

Ward NA. Blueberry root rot. Extension Plant Pathologist. 2013; PPFS-FR-S-19. WardNA Blueberry root rot. Extension Plant Pathologist 2013 PPFS-FR-S-19. Search in Google Scholar

Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One. 2017 Jun;12(6):e0179957. https://doi.org/10.1371/journal.pone.0179957 WuQ SunR NiM YuJ LiY YuC DouK RenJ ChenJ Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy PLoS One 2017 Jun 12 6 e0179957 https://doi.org/10.1371/journal.pone.0179957 Search in Google Scholar

Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol. 2021 Mar; 12:645484. https://doi.org/10.3389/fmicb.2021.645484 XieY PengQ JiY XieA YangL MuS LiZ HeT XiaoY ZhaoJ Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2 Front Microbiol 2021 Mar 12 645484 https://doi.org/10.3389/fmicb.2021.645484 Search in Google Scholar

Yi HW, Chi YJ. Biocontrol of Cytospora canker of poplar in northeast China with Trichoderma longibrachiatum. For Pathol. 2011 Aug; 41(4):299–307. https://doi.org/10.1111/j.1439-0329.2010.00704.x YiHW ChiYJ Biocontrol of Cytospora canker of poplar in northeast China with Trichoderma longibrachiatum For Pathol 2011 Aug 41 4 299 307 https://doi.org/10.1111/j.1439-0329.2010.00704.x Search in Google Scholar

Zhang D, Bi W, Kai K, Ye Y, Liu J. Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. LWT. 2020 Oct;132:109805. https://doi.org/10.1016/j.lwt.2020.109805 ZhangD BiW KaiK YeY LiuJ Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp LWT 2020 Oct 132 109805 https://doi.org/10.1016/j.lwt.2020.109805 Search in Google Scholar

Zhou Y, Yang L, Wang J, Guo L, Huang J. Synergistic effect between Trichoderma virens and Bacillus velezensis on the control of tomato bacterial wilt disease. Hortic. 2021 Nov 01;7(11):439. https://doi.org/10.3390/horticulturae7110439 ZhouY YangL WangJ GuoL HuangJ Synergistic effect between Trichoderma virens and Bacillus velezensis on the control of tomato bacterial wilt disease Hortic 2021 Nov 01 7 11 439 https://doi.org/10.3390/horticulturae7110439 Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie