Uneingeschränkter Zugang

Purification, Characterization and Inhibition of Alanine Racemase from a Pathogenic Strain of Streptococcus iniae


Zitieren

Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA, Koski RA. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One. 2011;6(5):e20374. https://doi.org/10.1371/journal.pone.0020374AnthonyKGStrychUYeungKRShoenCSPerezOKrauseKLCynamonMHAristoffPAKoskiRANew classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis.PLoS One. 2011;6(5):e20374. https://doi.org/10.1371/journal.pone.002037410.1371/journal.pone.0020374310270421637807Search in Google Scholar

Aruety T, Brunner T, Ronen Z, Gross A, Sowers K, Zilberg D. Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture. 2016;450:335–341. https://doi.org/10.1016/j.aquaculture.2015.08.002AruetyTBrunnerTRonenZGrossASowersKZilbergDDecreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture. 2016;450:335341. https://doi.org/10.1016/j.aquaculture.2015.08.00210.1016/j.aquaculture.2015.08.002Search in Google Scholar

Awasthy D, Bharath S, Subbulakshmi V, Sharma U. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology. 2012;158(2):319–327. https://doi.org/10.1099/mic.0.054064-0AwasthyDBharathSSubbulakshmiVSharmaUAlanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology. 2012;158(2):319327. https://doi.org/10.1099/mic.0.054064-010.1099/mic.0.054064-022075031Search in Google Scholar

Azam MA, Jayaram U. Induced fit docking, free energy calculation and molecular dynamics studies on Mycobacterium tuberculosis alanine racemase inhibitor. Mol Simul. 2018;44(5):424–432. https://doi.org/10.1080/08927022.2017.1393811AzamMAJayaramUInduced fit docking, free energy calculation and molecular dynamics studies on Mycobacterium tuberculosis alanine racemase inhibitor. Mol Simul.2018;44(5):424432. https://doi.org/10.1080/08927022.2017.139381110.1080/08927022.2017.1393811Search in Google Scholar

Badet B, Walsh C. Purification of an alanine racemase from Streptococcus faecalis and analysis of its inactivation by (1-aminoethyl) phosphonic acid enantiomers. Biochemistry. 1985;24(6):1333–1341. https://doi.org/10.1021/bi00327a010BadetBWalshCPurification of an alanine racemase from Streptococcus faecalis and analysis of its inactivation by (1-aminoethyl) phosphonic acid enantiomers. Biochemistry. 1985;24(6):13331341. https://doi.org/10.1021/bi00327a01010.1021/bi00327a0103921052Search in Google Scholar

Batson S, de Chiara C, Majce V, Lloyd AJ, Gobec S, Rea D, Fülöp V, Thoroughgood CW, Simmons KJ, Dowson CG, et al. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun. 2017;8(1):1939. https://doi.org/10.1038/s41467-017-02118-7BatsonSde ChiaraCMajceVLloydAJGobecSReaDFülöpVThoroughgoodCWSimmonsKJDowsonCGet alInhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun.2017;8(1):1939. https://doi.org/10.1038/s41467-017-02118-710.1038/s41467-017-02118-7571716429208891Search in Google Scholar

Chacon O, Feng Z, Harris NB, Cáceres NE, Adams LG, Barletta RG. Mycobacterium smegmatis D-alanine racemase mutants are not dependent on D-alanine for growth. Antimicrob Agents Chemother. 2002;46(1):47–54. https://doi.org/10.1128/AAC.46.2.47-54.2002ChaconOFengZHarrisNBCáceresNEAdamsLGBarlettaRGMycobacterium smegmatis D-alanine racemase mutants are not dependent on D-alanine for growth. Antimicrob Agents Chemother. 2002;46(1):4754. https://doi.org/10.1128/AAC.46.2.47-54.200210.1128/AAC.46.2.47-54.200212699711751110Search in Google Scholar

CLSI. Antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Document M31-A3. Approved standard, 3rd ed. Wayne (USA): Clinical Laboratory Standards Institute; 2008.CLSIAntimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Document M31-A3. Approved standard, 3rd ed. Wayne (USA): Clinical Laboratory Standards Institute; 2008.Search in Google Scholar

Couñago RM, Davlieva M, Strych U, Hill RE, Krause KL. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Struct Biol. 2009;9(1):53. https://doi.org/10.1186/1472-6807-9-53CouñagoRMDavlievaMStrychUHillREKrauseKLBiochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Struct Biol.2009;9(1):53. https://doi.org/10.1186/1472-6807-9-5310.1186/1472-6807-9-53274369519695097Search in Google Scholar

Dal Pozzo M, Viégas J, Santurio DF, Rossatto L, Soares IH, Alves SH. da Costa MM. [Antimicrobial activities of essential oils extracted from spices against Staphylococcus spp isolated from goat mastitis] (in Portuguese). Cienc Rural. 2011;41(4):667–672. https://doi.org/10.1590/S0103-84782011005000029Dal PozzoMViégasJSanturioDFRossattoLSoaresIHAlvesSHda CostaMM[Antimicrobial activities of essential oils extracted from spices against Staphylococcus spp isolated from goat mastitis] (in Portuguese). Cienc Rural. 2011;41(4):667672. https://doi.org/10.1590/S0103-8478201100500002910.1590/S0103-84782011005000029Search in Google Scholar

Duque E, Daddaoua A, Cordero BF, De la Torre J, Antonia Molina-Henares M, Ramos JL. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440. Environ Microbiol Rep. 2017;9(5):581–588. https://doi.org/10.1111/1758-2229.12576DuqueEDaddaouaACorderoBFDe la TorreJAntonia Molina-HenaresMRamosJLIdentification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440. Environ Microbiol Rep.2017;9(5):581588. https://doi.org/10.1111/1758-2229.1257610.1111/1758-2229.1257628799718Search in Google Scholar

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.xFelsensteinJConfidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x10.1111/j.1558-5646.1985.tb00420.xSearch in Google Scholar

Francois JA, Kappock TJ. Alanine racemase from the acidophile Acetobacter aceti. Protein Expr Purif. 2007;51(1):39–48. https://doi.org/10.1016/j.pep.2006.05.016FrancoisJAKappockTJAlanine racemase from the acidophile Acetobacter aceti.Protein Expr Purif.2007;51(1):3948. https://doi.org/10.1016/j.pep.2006.05.01610.1016/j.pep.2006.05.016Search in Google Scholar

Guo S, Mo Z, Wang Z, Xu J, Li Y, Dan X, Li A. Isolation and pathogenicity of Streptococcus iniae in offshore cage-cultured Trachinotus ovatus in China. Aquaculture. 2018;492:247–252. https://doi.org/10.1016/j.aquaculture.2018.04.0151GuoSMoZWangZXuJLiYDanXLiAIsolation and pathogenicity of Streptococcus iniae in offshore cage-cultured Trachinotus ovatus in China. Aquaculture. 2018;492:247252. https://doi.org/10.1016/j.aquaculture.2018.04.015110.1016/j.aquaculture.2018.04.015Search in Google Scholar

Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T. Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l-cysteine and o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl. 1992;582(1-2): 41–48. https://doi.org/10.1016/0378-4347(92)80300-FHashimotoANishikawaTOkaTTakahashiKHayashiTDetermination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l-cysteine and o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl. 1992;582(1-2): 4148. https://doi.org/10.1016/0378-4347(92)80300-F10.1016/0378-4347(92)80300-FSearch in Google Scholar

Higashi T. Two types of hydroquinone oxidase of Pseudomonas aeruginosa. J Biochem. 1958;45(10):785–793. https://doi.org/10.1093/oxfordjournals.jbchem.a126807HigashiTTwo types of hydroquinone oxidase of Pseudomonas aeruginosa.J Biochem.1958;45(10):785793. https://doi.org/10.1093/oxfordjournals.jbchem.a12680710.1093/oxfordjournals.jbchem.a126807Search in Google Scholar

Hunter RC, Newman DK. A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol. 2010;192(22):5962–5971. https://doi.org/10.1128/JB.01021-10HunterRCNewmanDKA putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa.J Bacteriol.2010;192(22):59625971. https://doi.org/10.1128/JB.01021-1010.1128/JB.01021-10297644920870774Search in Google Scholar

Im H, Sharpe ML, Strych U, Davlieva M, Krause KL. The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiol. 2011;11(1):116. https://doi.org/10.1186/1471-2180-11-116ImHSharpeMLStrychUDavlievaMKrauseKLThe crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiol.2011;11(1):116. https://doi.org/10.1186/1471-2180-11-11610.1186/1471-2180-11-116314681421612658Search in Google Scholar

Ju J, Xu S, Wen J, Li G, Ohnishi K, Xue Y, Ma Y. Characterization of endogenous pyridoxal 5’-phosphate-dependent alanine racemase from Bacillus pseudofirmus OF4. J Biosci Bioeng. 2009;107(3):225–229. https://doi.org/10.1016/j.jbiosc.2008.11.005JuJXuSWenJLiGOhnishiKXueYMaYCharacterization of endogenous pyridoxal 5’-phosphate-dependent alanine racemase from Bacillus pseudofirmus OF4. J Biosci Bioeng.2009;107(3):225229. https://doi.org/10.1016/j.jbiosc.2008.11.00510.1016/j.jbiosc.2008.11.00519269582Search in Google Scholar

Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A novel plp-dependent alanine/serine racemase from the hyperthermophilic archaeon Pyrococcus horikoshii ot-3. Front Microbiol. 2018;9:1481. https://doi.org/10.3389/fmicb.2018.01481KawakamiROhshidaTSakurabaHOhshimaTA novel plp-dependent alanine/serine racemase from the hyperthermophilic archaeon Pyrococcus horikoshii ot-3. Front Microbiol.2018;9:1481. https://doi.org/10.3389/fmicb.2018.0148110.3389/fmicb.2018.01481604736430038603Search in Google Scholar

Kim MG, Strych U, Krause K, Benedik M, Kohn H. N(2)-substituted D,L-cycloserine derivatives. J Antibiot (Tokyo). 2003b;56(2): 160–168. https://doi.org/10.7164/antibiotics.56.160KimMGStrychUKrauseKBenedikMKohnHN(2)-substituted D,L-cycloserine derivatives. J Antibiot (Tokyo). 2003b;56(2): 160168. https://doi.org/10.7164/antibiotics.56.16010.7164/antibiotics.56.16012715876Search in Google Scholar

Kim MG. Strych U, Krause K, Benedik M, Kohn H. Evaluation of amino-substituted heterocyclic derivatives as alanine racemase inhibitors. Med Chem Res. 2003a;12(3):130–138.KimMGStrychUKrauseKBenedikMKohnHEvaluation of amino-substituted heterocyclic derivatives as alanine racemase inhibitors. Med Chem Res.2003a;12(3):130138.Search in Google Scholar

Lee Y, Mootien S, Shoen C, Destefano M, Cirillo P, Asojo OA, Yeung KR, Ledizet M, Cynamon MH, Aristoff PA, et al. Inhibition of mycobacterial alanine racemase activity and growth by thiadia-zolidinones. Biochem Pharmacol. 2013;86(2):222–230. https://doi.org/10.1016/j.bcp.2013.05.004LeeYMootienSShoenCDestefanoMCirilloPAsojoOAYeungKRLedizetMCynamonMHAristoffPAet alInhibition of mycobacterial alanine racemase activity and growth by thiadia-zolidinones. Biochem Pharmacol.2013;86(2):222230. https://doi.org/10.1016/j.bcp.2013.05.00410.1016/j.bcp.2013.05.004Search in Google Scholar

Liu D, Liu X, Zhang L, Jiao H, Ju J, Zhao B. Biochemical characteristics of an alanine racemase from Aeromonas hydrophil HBNUAh01. Microbiology. 2015;84(2):202–209. https://doi.org/10.1134/S0026261715020071LiuDLiuXZhangLJiaoHJuJZhaoBBiochemical characteristics of an alanine racemase from Aeromonas hydrophil HBNUAh01. Microbiology. 2015;84(2):202209. https://doi.org/10.1134/S002626171502007110.1134/S0026261715020071Search in Google Scholar

Liu D, Zhang T, Wang Y, Muhammad M, Xue W, Ju J, Zhao B. Knockout of alanine racemase gene attenuates the pathogenicity of Aeromonas hydrophila. BMC Microbiol. 2019;19(1):72. https://doi.org/10.1186/s12866-019-1437-3LiuDZhangTWangYMuhammadMXueWJuJZhaoBKnockout of alanine racemase gene attenuates the pathogenicity of Aeromonas hydrophila.BMC Microbiol.2019;19(1):72. https://doi.org/10.1186/s12866-019-1437-310.1186/s12866-019-1437-3Search in Google Scholar

Liu S, Wei Y, Zhou X, Zhang K, Peng X, Ren B, Chen V, Cheng L, Li M. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep. 2018;8(1):5984. https://doi.org/10.1038/s41598-018-24295-1LiuSWeiYZhouXZhangKPengXRenBChenVChengLLiMFunction of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans.Sci Rep.2018;8(1):5984. https://doi.org/10.1038/s41598-018-24295-110.1038/s41598-018-24295-1Search in Google Scholar

Nachbauer CA, James JH, Edwards LL, Ghory MJ, Fischer JE. Infusion of branched chain-enriched amino acid solutions in sepsis. Am J Surg. 1984;147(6):743–752. https://doi.org/10.1016/0002-9610(84)90192-2NachbauerCAJamesJHEdwardsLLGhoryMJFischerJEInfusion of branched chain-enriched amino acid solutions in sepsis. Am J Surg.1984;147(6):743752. https://doi.org/10.1016/0002-9610(84)90192-210.1016/0002-9610(84)90192-2Search in Google Scholar

Nakatani Y, Opel-Reading HK, Merker M, Machado D, Andres S, Kumar SS, Moradigaravand D, Coll F, Perdigão J, Portugal I, et al. Role of alanine racemase mutations in Mycobacterium tuberculosis d-cycloserine resistance. Antimicrob Agents Chemother. 2017;61(12):e01575-17. https://doi.org/10.1128/AAC.01575-17NakataniYOpel-ReadingHKMerkerMMachadoDAndresSKumarSSMoradigaravandDCollFPerdigãoJPortugalIet al.Role of alanine racemase mutations in Mycobacterium tuberculosis d-cycloserine resistance. Antimicrob Agents Chemother. 2017;61(12):e01575-17. https://doi.org/10.1128/AAC.01575-1710.1128/AAC.01575-17Search in Google Scholar

Palumbo E, Favier CF, Deghorain M, Cocconcelli PS, Grangette C, Mercenier A, Vaughan EE, Hols P. Knockout of the alanine race-mase gene in Lactobacillus plantarum results in septation defects and cell wall perforation. FEMS Microbiol Lett. 2004;233(1):131–138. https://doi.org/10.1016/j.femsle.2004.02.001PalumboEFavierCFDeghorainMCocconcelliPSGrangetteCMercenierAVaughanEEHolsPKnockout of the alanine race-mase gene in Lactobacillus plantarum results in septation defects and cell wall perforation. FEMS Microbiol Lett.2004;233(1):131138. https://doi.org/10.1016/j.femsle.2004.02.00110.1016/j.femsle.2004.02.001Search in Google Scholar

Patrick WM, Weisner J, Blackburn JM. Site-directed mutagenesis of Tyr354 in Geobacillus stearothermophilus alanine racemase identifies a role in controlling substrate specificity and a possible role in the evolution of antibiotic resistance. ChemBioChem. 2002;3(8):789–792. https://doi.org/10.1002/1439-7633(20020802)3:8<789::AID-CBIC789>3.0.CO;2-DPatrickWMWeisnerJBlackburnJMSite-directed mutagenesis of Tyr354 in Geobacillus stearothermophilus alanine racemase identifies a role in controlling substrate specificity and a possible role in the evolution of antibiotic resistance. ChemBioChem. 2002;3(8):789792. https://doi.org/10.1002/1439-7633(20020802)3:8<789::AID-CBIC789>3.0.CO;2-D10.1002/1439-7633(20020802)3:8<789::AID-CBIC789>3.0.CO;2-DSearch in Google Scholar

Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X, et al. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol. 2016;31(5):435–444. https://doi.org/10.1111/omi.12146QiuWZhengXWeiYZhouXZhangKWangSChengLLiYRenBXuXet ald-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutansMol Oral Microbiol.2016;31(5):435444. https://doi.org/10.1111/omi.1214610.1111/omi.12146Search in Google Scholar

Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog. 2018;10(1):30. https://doi.org/10.1186/s13099-018-0257-6RaySDasSPandaPKSuarMIdentification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog.2018;10(1):30. https://doi.org/10.1186/s13099-018-0257-610.1186/s13099-018-0257-6Search in Google Scholar

Saavedra MJ, Guedes-Novais S, Alves A, Rema P, Tacão M, Correia A, Martínez-Murcia A. Resistance to β-lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Int Microbiol. 2004;7(3):207–211.SaavedraMJGuedes-NovaisSAlvesARemaPTacãoMCorreiaAMartínez-MurciaAResistance to β-lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Int Microbiol.2004;7(3):207211.Search in Google Scholar

Scaletti ER, Luckner SR, Krause KL. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50). Acta Crystallogr D Biol Crystallogr. 2012;68(1):82–92. https://doi.org/10.1107/S0907444911050682ScalettiERLucknerSRKrauseKLStructural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50). Acta Crystallogr D Biol Crystallogr.2012;68(1):8292. https://doi.org/10.1107/S090744491105068210.1107/S0907444911050682324572422194336Search in Google Scholar

Seow TK, Inagaki K, Tamura T, Soda K, Tanaka H. Alanine racemase from an acidophile, Acidiphilium organovorum: purification and characterization. Biosci Biotechnol Biochem. 1998;62(2):242–247. https://doi.org/10.1271/bbb.62.242SeowTKInagakiKTamuraTSodaKTanakaHAlanine racemase from an acidophile, Acidiphilium organovorum: purification and characterization. Biosci Biotechnol Biochem.1998;62(2):242247. https://doi.org/10.1271/bbb.62.24210.1271/bbb.62.24227388515Search in Google Scholar

Shrestha R, Lockless SW, Sorg JA. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J Biol Chem. 2017;292(25):10735–10742. https://doi.org/10.1074/jbc.M117.791749ShresthaRLocklessSWSorgJAA Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J Biol Chem.2017;292(25):1073510742. https://doi.org/10.1074/jbc.M117.79174910.1074/jbc.M117.791749548157728487371Search in Google Scholar

Soda K, Tanizawa K. Thermostable alanine racemase. Its structural stability. Ann N Y Acad Sci. 1990;585 1 Vitamin B6:386–393. https://doi.org/10.1111/j.1749-6632.1990.tb28071.xSodaKTanizawaKThermostable alanine racemase. Its structural stability. Ann N Y Acad Sci.1990;585 1 Vitamin B6:386393. https://doi.org/10.1111/j.1749-6632.1990.tb28071.x10.1111/j.1749-6632.1990.tb28071.x2192620Search in Google Scholar

Strych U, Davlieva M, Longtin JP, Murphy EL, Im H, Benedik MJ, Krause KL. Purification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae. BMC Microbiol. 2007;7(1):40. https://doi.org/10.1186/1471-2180-7-40StrychUDavlievaMLongtinJPMurphyELImHBenedikMJKrauseKLPurification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae.BMC Microbiol.2007;7(1):40. https://doi.org/10.1186/1471-2180-7-4010.1186/1471-2180-7-40188526217509154Search in Google Scholar

Tassoni R, van der Aart LT, Ubbink M, van Wezel GP, Pannu NS. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun. 2017;483(1):122–128. https://doi.org/10.1016/j.bbrc.2016.12.183TassoniRvan der AartLTUbbinkMvan WezelGPPannuNSStructural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun.2017;483(1):122128. https://doi.org/10.1016/j.bbrc.2016.12.18310.1016/j.bbrc.2016.12.18328042035Search in Google Scholar

Tavares GC, de Queiroz GA, Assis GBN, Leibowitz MP, Teixeira JP, Figueiredo HCP, Leal CAG. Disease outbreaks in farmed Amazon catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae. Aquaculture. 2018;495(1):384–392. https://doi.org/10.1016/j.aquaculture.2018.06.027TavaresGCde QueirozGAAssisGBNLeibowitzMPTeixeiraJPFigueiredoHCPLealCAGDisease outbreaks in farmed Amazon catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae.Aquaculture. 2018;495(1):384392. https://doi.org/10.1016/j.aquaculture.2018.06.02710.1016/j.aquaculture.2018.06.027Search in Google Scholar

Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc. 2009;4(3):341–355. https://doi.org/10.1038/nprot.2008.250TeuléFCooperARFurinWABittencourtDRechELBrooksALewisRVA protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc.2009;4(3):341355. https://doi.org/10.1038/nprot.2008.25010.1038/nprot.2008.250272075319229199Search in Google Scholar

Toney MD. Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys. 2005;433(1):279–287. https://doi.org/10.1016/j.abb.2004.09.037ToneyMDReaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys.2005;433(1):279287. https://doi.org/10.1016/j.abb.2004.09.03710.1016/j.abb.2004.09.03715581583Search in Google Scholar

Wang Y, Yang C, Xue W, Zhang T, Liu X, Ju J, Zhao B, Liu D. Selection and characterization of alanine racemase inhibitors against Aeromonas hydrophila. BMC Microbiol. 2017;17(1):122. https://doi.org/10.1186/s12866-017-1010-xWangYYangCXueWZhangTLiuXJuJZhaoBLiuDSelection and characterization of alanine racemase inhibitors against Aeromonas hydrophila.BMC Microbiol.2017;17(1):122. https://doi.org/10.1186/s12866-017-1010-x10.1186/s12866-017-1010-x544528328545531Search in Google Scholar

Wei Y, Qiu W, Zhou XD, Zheng X, Zhang KK, Wang SD, Li YQ, Cheng L, Li JY, Xu X, et al. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans. Int J Oral Sci. 2016;8(4):231–238. https://doi.org/10.1038/ijos.2016.34WeiYQiuWZhouXDZhengXZhangKKWangSDLiYQChengLLiJYXuXet alAlanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans.Int J Oral Sci.2016;8(4):231238. https://doi.org/10.1038/ijos.2016.3410.1038/ijos.2016.34516841527740612Search in Google Scholar

Yokoigawa K, Kawai H, Endo K, Hee Lim Y, Esaki N, Soda K. Thermolabile alanine racemase from a psychotroph, Pseudomonas fluorescens: purification and properties. Biosci Biotechnol Biochem. 1993;57(1):93–97. https://doi.org/10.1271/bbb.57.93YokoigawaKKawaiHEndoKHee LimYEsakiNSodaKThermolabile alanine racemase from a psychotroph, Pseudomonas fluorescens: purification and properties. Biosci Biotechnol Biochem.1993;57(1):9397. https://doi.org/10.1271/bbb.57.9310.1271/bbb.57.937763424Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie