Uneingeschränkter Zugang

Hardening Accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as Strength-Enhancing Admixture Solutions for Soil Stabilization


Zitieren

Akomah, U. – Nwaogazie, I. L. – Akaranta, O. – David, A. O. (2021) Comparative Analysis of Activated Corn Cob and Bentonite Clay for the Removal of Lead and Nickel from Raw Water. Slovak Journal of Civil Engineering, 29(2), 30–38. https://doi.org/10.2478/sjce-2021-0011 Search in Google Scholar

Åhnberg, H. – Holm, G. (1987) Om inverkan av härdningstemperaturen på skjuvhållfastheten hos kalk- och cementstabiliserad jord. Statens geotekniska institut, Rapport 30. [On the effect of the curing temperature on the shear strength of lime and cement stabilized soil. Swedish Geotechnical Institute, Report 30. Search in Google Scholar

Barnaure, M. – Bonnet, S. – Poullain, P. (2021) Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Construction and Building Materials, 281, 122613. https://doi.org/10.1016/j.conbuildmat.2021.122613 Search in Google Scholar

Brencich, A. – Lątka, D. – Matysek, P. – Orban, Z. – Sterpi, E. (2021) Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials, 306, 124494. https://doi.org/10.1016/j.conbuildmat.2021.124494 Search in Google Scholar

Buritatum, A. – Horpibulsuk, S. – Udomchai, A. – Suddeepong, A. – Takaikaew, T. – Vichitcholchai, N. – Horpibulsuk, J. – Arulrajah, A. (2021) Durability improvement of cement stabilized pavement base using natural rubber latex. Transportation Geotechnics, 28, 100518. https://doi.org/10.1016/j.trgeo.2021.100518 Search in Google Scholar

Chen, C. – Roseberg, R. J. – Selker, J. S. (2002) Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil. Agricultural Water Management, 54, 2, 159-171. https://doi.org/10.1016/S0378-3774(01)00150-0 Search in Google Scholar

Coe, J. – Brandenberg, S. J. (2010) p-Wave Reflection Imaging of Submerged Soil Models Using Ultrasound. Journal of Geotechnical and Geoenvironmental Engineering, 136, 10, 1358–1367. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000346 Search in Google Scholar

Dahlin, T. – Svensson, M. – Lindh, P. (1999) DC Resistivity and SASW for Validation of Efficiency in So il St abilisation Prior to Road Construction. In: Proceedings EEGS’ 99, Budapest, Hungary, 6-9 Sept. 1999, 1–3. https://doi.org/10.3997/2214-4609.201406466 Search in Google Scholar

Di Sante, M., Bernardo, D., Bellezza, I., Fratalocchi, E., Mazzieri, F. (2022) Linking small-strain stiffness to development of chemical reactions in lime-treated soils. Transportation Geotechnics, 34, 100742. https://doi.org/10.1016/j.trgeo.2022.100742 Search in Google Scholar

Dimter, S. – Rukavina, T. – Minažek, K. (2016) Estimation of elastic properties of fly ash–stabilized mixes using nondestructive evaluation methods. Construction and Building Materials 102, 505–514. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.175 Search in Google Scholar

Drnevich, V. P. – Isenhower, W. M. – Stokoe, K. H. – Allen, J. C. (1987) Instrumentation for Torsional Shear/Resonant Column Measurements Under Anisotropic Stresses. Geotechnical Testing Journal 10(4). https://doi.org/10.1520/GTJ10544J Search in Google Scholar

Drnevich, V. P. – Ashlock, J. C. (2017) Measurement of Damping in Soils by the Resonant Column Test. In: Proceedings Geotechnical Frontiers 2017: Seismic Performance and Liquefaction. GSP 281, March 12–15, 2017, Orlando, FL, USA. https://doi.org/10.1061/9780784480489.009 Search in Google Scholar

Howard, A. K. (1986) Soil classification handbook: unified soil classification system. Denver, CO, USA: Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation. Search in Google Scholar

Isenhower, W. M. – Stokoe, K. H., II – Allen, J. C. (1987) Instrumentation for Torsional Shear/Resonant Column Measurements Under Anisotropic Stresses. Geotechnical Testing Journal, GTJODJ, 10(4), 183–191. Search in Google Scholar

Ismail, A. I. M. – Ryden, N. (2014) The Quality Control of Engineering Properties for Stabilizing Silty Nile Delta Clay Soil, Egypt. Geotechnical and Geological Engineering, 32, 773–781. https://doi.org/10.1007/s10706-014-9756-5 Search in Google Scholar

James, J. (2020) Sugarcane press mud modification of expansive soil stabilized at optimum lime content: Strength, mineralogy and microstructural investigation. Journal of Rock Mechanics and Geotechnical Engineering, 12, 2, 395-402. https://doi.org/10.1016/j.jrmge.2019.10.005 Search in Google Scholar

Källén, H. – Heyden, A. – Lindh, P. (2014) Estimation of grain size in asphalt samples using digital image analysis. In Andrew G. Tescher, editor, Applications of Digital Image Processing XXXVII, 9217, 292–300. International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2061730 Search in Google Scholar

Källén, H. – Heyden, A. – Åström, K. – Lindh, P. (2016) Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84, 56–67, 2016. https://doi.org/10.1016/j.measurement.2016.02.007 Search in Google Scholar

Kantesaria, N. – Chandra, P. – Sachan, A. (2021) Stabilization of Expansive Soil Using Agar Biopolymer. In: International Foundations Congress and Equipment Expo 2021 (IFCEE), May 10–14, 2021, Dallas, TX, U.S.A, pp. 272-281. https://doi.org/10.1061/9780784483411.026 Search in Google Scholar

Kasprzhitskii, A. – Lazorenko, G. – Yavna, V. – Daniel, Ph. (2016) DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions. Journal of Molecular Structure 1109, 97–105. https://doi.org/10.1016/j.mol-struc.2015.12.064 Search in Google Scholar

Khabiri, M. M. – Ebrahimialavijeh, B. (2021) Effect of Modifying Aggregates by Rap and the Simultaneous Use of Adhesives for the Stabilization of a Sandy Pavement Subgrade. Slovak Journal of Civil Engineering, 29, 2, 1–8. https://doi.org/10.2478/sjce-2021-0008 Search in Google Scholar

Koukouzas, N. – Tyrologou, P. – Koutsovitis, P. – Karapanos, D. – Karkalis, C. (2022) 15 – Soil stabilization. Handbook of Fly Ash, pp. 475–500. Butterworth-Heinemann. ISBN: 978-0-12-817686-3. https://doi.org/10.1016/B978-0-12-817686-3.00004-9 Search in Google Scholar

Lemenkov, V. – Lemenkova, P. (2021a) Testing Deformation and Compressive Strength of the Frozen Fine-Grained Soils With Changed Porosity and Density. Journal of Applied Engineering Sciences, 11, 113–120. https://doi.org/10.2478/jaes-2021-0015 Search in Google Scholar

Lemenkov, V. – Lemenkova, P. (2021b) Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civil and Environmental Engineering Reports, 31, 63–84. https://doi.org/10.2478/ceer-2021-0020. Search in Google Scholar

Lindh, P. – Dahlin, T. – Svensson, M. (2000) Comparisons between different test methods for soil stabilisation. In: Proceedings of the ISRM International Symposium, Melbourne; Australia, 19-24 Nov. 2000, 1–5. Search in Google Scholar

Lindh P. (2001) Optimizing binder blends for shallow stabilisation of fine-grained soils. Ground Improvement, 5(1), 23–34. https://doi.org/10.1680/grim.2001.5.1.23 Search in Google Scholar

Lindh, P. (2003) Mcv and shear strength of compacted fine-grained tills. In: Proceedings of 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 4–8 Aug. 2003, Singapore, 493–496. Search in Google Scholar

Lindh, P. (2004) Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD thesis, Lund University, Lund, Sweden. ISRN: LUTVDG/TVGT-1013–SE. https://doi.org/10.13140/RG.2.1.1313.6481 Search in Google Scholar

Lindh, P. – Winter, M. G. (2003) Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology 36(4), pp. 321–330. https://doi.org/10.1144/1470-9236/03-018 Search in Google Scholar

Lindh, P. – Lemenkova, P. (2021a) Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mechanica et Automatica 15(4), pp. 236–248. https://doi.org/10.2478/ama-2021-0030 Search in Google Scholar

Lindh, P. – Lemenkova, P. (2021b) Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research 65(2), pp. 39–62. https://doi.org/10.2478/ncr-2021-0012 Search in Google Scholar

Lo Presti, D. C. F. – Jamiolkowski, M. – Pallara, O. – Cavallaro, A. – Pedroni, S. (1997) Shear modulus and damping of soils. Géotechnique, 47(3), 603–617. https://doi.org/10.1680/geot.1997.47.3.603 Search in Google Scholar

Lo Presti, D. – Pallara, O. – Mensi, E. (2007) Characterization of Soil Deposits for Seismic Response Analysis. In: Ling, H.I., Callisto, L., Leshchinsky, D., Koseki, J. (eds) Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Solid Mechanics and Its Applications, 146. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6146-2_2 Search in Google Scholar

Luo, B. – Luo, Z. – Wang, D. – Shen, C. – Xia, M. (2021) Influence of alkaline and alkali-free accelerators on strength, hydration and microstructure characteristics of ultra-high performance concrete. Journal of Materials Research and Technology, 15, 3283–3295. https://doi.org/10.1016/j.jmrt.2021.09.133 Search in Google Scholar

Mamoon, S. M. – Ahmad, S. (1990) Seismic Response of Piles to Obliquely Incident SH, SV, and P Waves. Journal of Geotechnical Engineering, 116, 2, 186–204. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:2(186) Search in Google Scholar

Meng, T. – Qiang, Y. – Hu, A. – Xu, C. – Lin, L. (2017) Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Construction and Building Materials, 151, 775-781. https://doi.org/10.1016/j.conbuildmat.2017.06.016 Search in Google Scholar

Multon, S. – Verdier, J. – Villain, G. – Sogbossi, H. – Dérobert, X. – Cagnon H. – Balayssac, J.-P. (2022) Non-destructive measurements for the evaluation of the air permeability of concrete structures. Measurement, 196 111204. https://doi.org/10.1016/j.measurement.2022.111204 Search in Google Scholar

Patel, A. (2019) 3 – Soil stabilization. In: Geotechnical Investigations and Improvement of Ground Conditions. Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, pp. 19-27. ISBN: 978-0-12-817048-9. https://doi.org/10.1016/B978-0-12-817048-9.00003-2 Search in Google Scholar

PCB Piezotronics Group Inc. (2013) Model 352B10. Miniature, lightweight (0.7 gm), ceramic shear ICP® accel., 10 mV/g, 2 to Installation and Operating Manual. https://www.pcb.com/contentstore/docs/pcb_corporate/vibration/products/manuals/352b10.pdf Search in Google Scholar

Saride, S.Puppala, A. J. – Chikyala, S. R. (2013) Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science, 85, 39-45. https://doi.org/10.1016/j.clay.2013.09.008 Search in Google Scholar

Scrivener, K. L. - Juillan, P. - Monteiro, P. J. M. (2015) Advances in understanding cement hydration mechanisms. Cement and Concrete Research, 78, Part A, 38–56. https://doi.org/10.1016/j.cemconres.2015.05.025 Search in Google Scholar

She, W. – Wei, L. – Zhao, G. – Yang, G. – Jiang, J. – Hong, J. (2019) New insights into the frost heave behavior of coarse grained soils for high-speed railway roadbed: Clustering effect of fines. Cold Regions Science and Technology, 167, 102863. https://doi.org/10.1016/j.coldre-gions.2019.102863 Search in Google Scholar

SIS (2003) Soil quality – Determination of soil water content as a volume fraction on the basis of known dry bulk density – Gravimetric method. https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/hydrological-properties-of-soils/ssiso16586/ Search in Google Scholar

SIS (2016) Geotechnical investigation and testing – Laboratory testing of soil – Part 4: Determination of par-ticle size distribution (ISO 17892-4:2016). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/sseni-so1789242016/ Search in Google Scholar

SIS (2017a) Soil quality – Determination of particle density (ISO 11508:2017). SS-EN ISO 11508:2017. https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physical-properties-of-soils/ss-en-iso-115082017/ Search in Google Scholar

SIS (2017b) Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017). https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedolo-gy/physical-properties-of-soils/ss-en-iso-17892-72018/ Search in Google Scholar

SIS (2019) Standard Test Methods for Downhole Seismic Testing. ASTM standard D7400/D7400M-19. STD- 80010978. https://www.sis.se/en/produkter/external-cate-gories/construction-astm-vol-04/soil-and-rock-ii-d5877--latest-astmvol-0409/astm-d7400d7400m-19/ Search in Google Scholar

TBA Trimmiser Baustoffe AG (2010) Report from practice on the X-Seed 100® accelerator from BASF [Online access: 07.04.2022]. URL: https://www.bft-international.com/en/artikel/artikel_en_965624.html Search in Google Scholar

Verástegui-Flores, R. D. – Di Emidio, G. – Bezuijen, A. – Vanwalleghem, J. – Kersemans, M. (2015) Evaluation of the free-free resonant frequency method to determine stiffness moduli of cement-treated soil. Soils and Foundation, 55(5), 930–950. https://doi.org/10.1016/j.sandf.2015.09.001 Search in Google Scholar

Vrettos, C. – Banzibaganye, G. (2022) Effects of specimen size and inertia on resonant column tests applied to sands. Soil Dynamics and Earthquake Engineering 155, 107136. https://doi.org/10.1016/j.soildyn.2021.107136 Search in Google Scholar

Wang, C. – Feng, G. – Zhang, Z. – Huang, M. – Qi, W. – Ma, L. (2021) Geometrical and statistical analysis of dynamic crack morphology in shrink-swell soils with addition of maize roots or salinity (NaCl). Soil and Tillage Research, 212, 105057. https://doi.org/10.1016/j.still.2021.105057 Search in Google Scholar

Wang, F. - Li, K. - Liu, Y. (2022a) Optimal water-cement ratio of cement-stabilized soil. Construction and Building Materials, 320, 126211. https://doi.org/10.1016/j.conbuild-mat.2021.126211 Search in Google Scholar

Wang, Y. - Shi, C. - Lei, L. - Ma, Y. - Liu, J. - Hu, X. (2022b) Formulation of an alkali-free accelerator and its effects on hydration and mechanical properties of Portland cement. Cement and Concrete Composites, 129, 104485. https://doi.org/10.1016/j.cemconcomp.2022.104485 Search in Google Scholar

Wu, J. – Min, Y. – Li, B. – Zheng, X. (2021) Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one-dimensional compressive loading. Soils and Foundations, 61, 4, 974–988. https://doi.org/10.1016/j.sandf.2021.06.001 Search in Google Scholar

Yang, J. - Yang, M. - He, X. - Ma, M. - Fan, M. - Su, Y. - Tan, H. (2021) Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 306, 124840. https://doi.org/10.1016/j.conbuildmat.2021.124840 Search in Google Scholar

Young, J. F. (2001) Portland Cements. In: Jürgen Buschow et al. (eds.). Encyclopedia of Materials: Science and Tech-nology (2nd Ed.). Elsevier, Oxford, UK. pp. 7768–7773. ISBN: 978-0-08-043 152-9. https://doi.org/10.1016/B0-08-043152-6/01398-X Search in Google Scholar

Zhang, J. – Tan, H. – He, X. – Zhao, R. – Yang, J. – Su, Y. (2021) Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. Journal of Cleaner Production, 283, 124632. https://doi.org/10.1016/j.jclepro.2020.124632 Search in Google Scholar

Zhang, Y. – Wang, F. – Tian, Q. -–Shen, Z. (2022) Chapter 3 – Natural or engineered clays for stabilization/solidification. Low Carbon Stabilization and Solidification of Hazardous Wastes, 31-47. https://doi.org/10.1016/B978-0-12-824004-5.00024-4 Search in Google Scholar

Zhao, D. - Khoshnazar, R. (2021) Hydration and microstructural development of calcined clay cement paste in the presence of calcium-silicate-hydrate (C–S–H) seed. Ce-ment and Concrete Composites, 122, 104162. https://doi.org/10.1016/j.cemconcomp.2021.104162 Search in Google Scholar

Zhou, M. – Du, Y.-J. – Wang, F. – Arulrajah, A. – Horpibulsuk, S. (2017) Earth pressures on the trenched HDPE pipes in fine-grained soils during construction phase: Full-scale field trial and finite element modeling. Transportation Geotechnics, 12, 56-69. https://doi.org/10.1016/j.trgeo.2017.08.002 Search in Google Scholar

eISSN:
1338-3973
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere